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Abstract

In recent years Internet miscreants have been leveraging
the DNS to build malicious network infrastructures for
malware command and control. In this paper we pro-
pose a novel detection system called Kopis for detecting
malware-related domain names. Kopis passively moni-
tors DNS traffic at the upper levels of the DNS hierar-
chy, and is able to accurately detect malware domains by
analyzing global DNS query resolution patterns.

Compared to previous DNS reputation systems such
as Notos [3] and Exposure [4], which rely on monitor-
ing traffic from local recursive DNS servers, Kopis offers
a new vantage point and introduces new traffic features
specifically chosen to leverage the global visibility ob-
tained by monitoring network traffic at the upper DNS hi-
erarchy. Unlike previous work Kopis enables DNS oper-
ators to independently (i.e., without the need of data from
other networks) detect malware domains within their au-
thority, so that action can be taken to stop the abuse.
Moreover, unlike previous work, Kopis can detect mal-
ware domains even when no IP reputation information is
available.

We developed a proof-of-concept version of Kopis,
and experimented with eight months of real-world data.
Our experimental results show that Kopis can achieve
high detection rates (e.g., 98.4%) and low false positive
rates (e.g., 0.3% or 0.5%). In addition Kopis is able to
detect new malware domains days or even weeks before
they appear in public blacklists and security forums, and
allowed us to discover the rise of a previously unknown
DDoS botnet based in China.

1 Introduction

The Domain Name System (DNS) [17, 18] is a funda-
mental component of the Internet. Over the years In-
ternet miscreants have used the DNS to build malicious
network infrastructures. For example, botnets [1, 21, 27]

and other types of malicious software make use of do-
main names to locate their command and control (C&C)
servers and communicate with attackers, e.g., to ex-
filtrate stolen private information, wait for commands
to perform attacks on other victim machines, etc. In
response to this malicious use of DNS, static domain
blacklists containing known malware domains have been
used by network operators to detect DNS queries origi-
nating from malware-infected machines and block their
communications with the attackers [16, 19].

Unfortunately, the effectiveness of static domain
blacklists are increasingly limited because there are now
an overwhelming number of new domain names appear-
ing on the Internet every day and attackers frequently
switch to different domains to run their malicious activi-
ties, thus making it difficult to keep blacklists up-to-date.

To overcome the limitations of static domain black-
lists, we need a detection system that can dynamically
detect new malware-related domains. This detection sys-
tem should:

(1) Have global visibility into DNS request and response
messages related to large DNS zones. This enables
“early warning”, whereby malware domains can be
detected before the corresponding malware infec-
tions reach our local networks.

(2) Enable DNS operators to independently deploy the
system and detect malware-related domains from
within their authority zones without the need for data
from other networks or other inter-organizational co-
ordination. This enables practical, low-cost, and
time-efficient detection and response.

(3) Accurately detect malware-related domains even in
the absence of reputation data for the IP address
space pointed to by the domains. IP reputation data
is often difficult to accumulate and is fragile. This
issue may become particularly important as IPv6 is
deployed in the near future, due to the more expan-
sive address space.
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Figure 1: Overview of the levels at which Kopis, Notos,
and Exposure perform DNS monitoring.

Recently researchers have proposed two dynamic do-
main reputation systems, Notos [3] and Exposure [4].
Unfortunately, while the results reported in [3, 4] are
promising, neither Notos nor Exposure can meet all the
requirements stated above, as Notos and Exposure rely
on passive monitoring of recursive DNS (RDNS) traf-
fic. As shown in Figure 1, they monitor the DNS queries
from a (limited) number of RDNS servers (e.g., RDNS
3 and 4), and have only partial visibility on DNS mes-
sages related to large DNS zones. To obtain truly global
visibility into DNS traffic related to a given DNS zone,
these systems need access to a very large number of
RDNS sensors in many diverse locations. This is not
easy to achieve in practice in part due to operational
costs, privacy concerns related to sharing data across or-
ganizational boundaries, and difficulties in establishing
and maintaining trust relationships between network op-
erators located in different countries, for example. For
the same reasons, Notos and Exposure have not been de-
signed to be independently deployed and run by single
DNS operators, because they rely on data sharing among
several networks to obtain a meaningful level of visibility
into DNS traffic.

On the other hand, monitoring DNS traffic from the
upper DNS hierarchy, e.g., at top-level domain (TLD)
server A, and authoritative name servers (AuthNSs) B
and C, offers visibility on all DNS messages related to
domains on which A, B, and C have authority or are a
point of delegation. For example, assuming B is the Au-
thNS for the example.com zone, monitoring the DNS
traffic at B provides visibility on all DNS messages from
all RDNS servers around the Internet that query a domain
name under the example.com zone.

Following this intuition, in this paper we propose a
novel detection system called Kopis, which takes advan-
tage of the global visibility available at the upper lev-
els of the DNS hierarchy to detect malware-related do-
mains. In order for Kopis to satisfy the three require-
ments outlined above, it needs to deal with a number
of new challenges. Most significantly, the higher up we
move in the DNS hierarchy, the stronger the effects of
DNS caching [15]. As a consequence, moving up in the
hierarchy restricts us to monitoring DNS traffic with a
coarser granularity. For example, at the TLD level we
will only be able to see a small subset of queries to do-
mains under a certain delegation point due to the effects
of the DNS cache.

Kopis works as follows. It analyzes the streams of
DNS queries and responses at AuthNS or TLD servers
(see Figure 1) from which are extracted statistical fea-
tures such as the diversity in the network locations of the
RDNS servers that query a domain name, the level of
“popularity” of the querying RDNS servers (defined in
detail in Section 4), and the reputation of the IP space
into which the domain name resolves. Given a set of
known legitimate and known malware-related domains
as training data, Kopis builds a statistical classification
model that can then predict whether a new domain is
malware-related based on observed query resolution pat-
terns.

Our choice of Kopis’ statistical features, which we dis-
cuss in detail in Section 4, is determined by the nature of
the information accessible at the upper DNS hierarchy.
As a result these features are significantly different from
those used by RDNS-based systems such as Notos [3]
and Exposure [4]. In particular, we were pleasantly sur-
prised to find that, while Notos and Exposure rely heav-
ily on features based on IP reputation, Kopis’ features
enabled it to accurately detect malware-related domains
even in the absence of IP reputation information. This
may become a significant advantage in the near future
because the deployment of IPv6 may severely impact the
effectiveness of current IP reputation systems due to the
substantially larger IP address space that would need to
be monitored.

To summarize, we make the following contributions:

• We developed a novel approach to detect malware-
related domain names. Our system leverages the
global visibility obtained by monitoring DNS traf-
fic at the upper levels of the DNS hierarchy, and can
detect malware-related domains based on DNS res-
olution patterns.

• Kopis enables DNS operators to independently (i.e.,
without the need of data from other networks) detect
malware-domains within their scope of authority, so
that action can be taken to stop the abuse.
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• We systematically examined real-world DNS traces
from two large AuthNSs and a country-code level
TLD server. We performed a rigorous evaluation
of our statistical features and identified two new
feature families that, unlike previous work, enable
Kopis to detect malware domains even when no IP
reputation information is available.

• We developed a proof-of-concept version of Kopis,
and experimented with eight months of real-world
data. Our experimental results show that Kopis can
achieve high detection rates (e.g., 98.4%) and low
false positive rates (e.g., 0.3% or 0.5%). More sig-
nificantly, Kopis was able to identify previously un-
known malware domain names several weeks be-
fore they appeared in blacklists or in security fo-
rums. In addition, using Kopis we detected the
rise of a previously unknown DDoS botnet based
in China.

2 Background and Related Work

DNS Concepts and Terminology The domain name
space is structured like a tree. A domain name identi-
fies a node in the tree. For example, the domain name
F.D.B.A. identifies the path from the root “.” to a node
F in the tree (see Figure 2(a)). The set of resource infor-
mation associated with a particular name is composed of
resource records (RRs) [17, 18]. The depth of a node in
the tree is sometimes referred to as domain level. For
example, A. is a top-level domain (TLD), B.A. is a
second-level domain (2LD), D.B.A. is a third-level do-
main (3LD), and so on.

The information related to the domain name space is
stored in a distributed domain name database. The do-
main name database is partitioned by “cuts” made in the
name space between adjacent nodes. After all cuts are
made, each group of connected nodes represent a sep-
arate zone [17]. Each zone has at least one node, and
hence a domain name, for which it is authoritative. For
each zone, a node which is closer to the root than any
other node in the zone can be identified. The name of this
node is often used to identify the zone. The RRs of the
nodes in a given zone are served by one or more authori-
tative name servers (AuthNSs). AuthNSs that have com-
plete knowledge about a zone (i.e., they store the RRs for
all the nodes related to the zone in question in its zone
files) are said to have authority over that zone [17, 18].
AuthNSs will typically support one or more zones, and
can delegate the authority over part of a (sub-)zone to
other AuthNSs.

DNS queries are usually initiated by a stub resolver
on a user’s machine, which relies on a recursive DNS re-
solver (RDNS) for obtaining a set of RRs owned by a
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Figure 2: Example of DNS tree and domain resolution
process.

given domain name. The RDNS is responsible for di-
rectly contacting the AuthNSs on behalf of the stub re-
solver to obtain the requested information, and return it
to the stub resolver. The RDNS is also responsible for
caching the obtained information up to a certain period
of time, called the Time To Live (TTL), so that if the same
or another stub resolver queries again for the same in-
formation within the TTL time window, the RDNS will
not need to contact the authoritative name servers (thus
improving efficiency). Figure 2(b) enumerates the steps
involved in a typical query resolution process, assuming
an empty cache.

Related Work To the best of our knowledge, Wessels
et al. [30] were the first to analyze DNS query data as
seen from the upper DNS hierarchy. The authors fo-
cused on examining the DNS caching behavior of re-
cursive DNS servers from the point of view of AuthNS
and TLD servers, and how different implementations of
caching systems may affect the performance of the DNS.

Recently, Hao et al. [13] released a report on DNS
lookup patterns measured from the .com TLD servers.
Their preliminary analysis shows that the resolution
patterns for malicious domain names are sometimes
different from those observed for legitimate domains.
While [13] only reports some preliminary measurement
results and does not discuss how the findings may be
leveraged for detection purposes, it does hint that a mal-
ware detection system may be built around TLD-level
DNS queries. We designed Kopis to do just that, namely
monitor query streams at the upper DNS hierarchy and
be able to detect previously unknown malware domains.

Several studies provide deep understanding behind
the properties of malware propagation and botnet’s life-
time [7, 25, 29]. An interesting observation among all
these research efforts is the inherent diversity of the bot-
net’s infected population. Collins et al. [6] introduced
and quantified the notion of “network uncleanliness”
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from the temporal and spatial network point of view,
showing that it is very probable to have a large number
of infected bots in the same network over an epoch. They
also discuss that this could be a direct effect of the net-
work policy enforced at the edge. Kopis directly uses
the intuition behind these past research efforts in the re-
quester diversity and requester profile statistical feature
families.

A number of research efforts can be found in the
area of DNS blacklisting and reputation. Felegyhazi et
al. [11] recently proposed a DNS reputation blacklisting
methodology based on WHOIS information, while An-
tonakakis et al. [3] and Bilge et al. [4] propose dynamic
reputation systems based on passive RDNS monitoring.
Our system is complementary to the above mentioned
works. To the best of our knowledge, we are the first
to analyze DNS query patterns at the AuthNS and TLD
server level for the purpose of detecting domain names
related to malware.

3 System Overview

Kopis monitors streams of DNS queries to and responses
from the upper DNS hierarchy, and detects malware do-
main names based on the observed query/response pat-
terns. An overview of Kopis is shown in Figure 3.

Our system divides the monitored data streams into
epochs {Ei}i=1..m (currently, an epoch is one day long).
At the end of each epoch Kopis summarizes the DNS
traffic related to a given domain name d by computing
a number of statistical features, such as the diversity of
the IP addresses associated with the RDNS servers that
queried d, the relative volume of queries from the set of
querying RDNS servers, historic information related to
the IP space pointed to by d, etc. We defer a detailed de-
scription and motivations regarding the features we mea-
sure to Section 4. For now, it suffices to consider the
feature computation module in Figure 3 as a function
F(d,Ei) = vi

d that maps the DNS traffic in epoch Ei

related to d into a feature vector vi
d.

Kopis operates in two modes: a training mode and an
operation mode. In training mode, Kopis makes use of a
knowledge base KB, which consists of a set of known
malware-related and known legitimate domain names
(and related resolved IPs) for which the monitored Au-
thNS and TLD servers are authoritative or a point of del-
egation. Kopis’ learning module takes as input the set of
feature vectors Vtrain = {vi

d}i=1..m, ∀d ∈ KB, which
summarizes the query/response behavior of each domain
in the knowledge base across m days. Each domain in
KB, and in turn each feature vector in Vtrain, is associ-
ated with a label, namely legitimate or malware. We can
therefore use supervised learning techniques [5] to learn
a statistical classification model S of DNS query patterns

AuthNS 2AuthNS 1

.ca TLD

Kopis Detection System

Feature 
Computation 

Detection
Reports

Learning
Module

Knowledge
Base

Statistical
Classifier

Figure 3: A high-level overview of Kopis.

related to legitimate and malware domains as seen from
the upper DNS hierarchy.

In operation mode, Kopis monitors the streams of
DNS traffic and, at the end of each epoch Ej , maps each
domain d′ /∈ KB (i.e., all unknown domains) extracted
from the query/response streams into a feature vector vj

d′ .
At this point, given a domain d′ the statistical classifier
S (see Figure 3) assigns a label ld′,j and a confidence
score c(ld′,j), which express whether the query/response
patterns observed for d′ during epoch Ej resemble ei-
ther known legitimate or malware behavior, and with
what probability. In order to make a final decision about
d′, Kopis first gathers a series of labels and confidence
scores S(vj

d′) = {ld′,j , c(ld′,j)}, j = t, .., (t + m) for m
consecutive epochs, where t refers to a given starting
epoch Et. Finally, Kopis computes the average confi-
dence scores CM = avgj{c(ld′,j)} for the malware la-
bels assigned to d′ by S across the m epochs, and an
alarm is raised if CM is greater than a threshold θ.

4 Statistical Features

In this section we describe the statistical features that
Kopis extracts from the monitored DNS traffic. For each
DNS query qj regarding a domain name d and the re-
lated DNS response rj , we first translate it into a tuple
Qj(d) = (Tj , Rj , d, IPsj), where Tj identifies the epoch
in which the query/response was observed, Rj is the IP
address of the machine that initiated the query qj , d is
the queried domain, and IPsj is the set of resolved IP
addresses as reported in the response rj . It is worth not-
ing that since we are monitoring DNS queries and re-
sponses from the upper DNS hierarchy, in some cases the
response may be delegated to a name server which Kopis
does not currently monitor. This is particularly relevant
to our TLD-level data feed, since most TLD servers are
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delegation-only1. In all those cases in which the response
does not carry the resolved IP addresses, we can derive
the IPs set by leveraging a passive DNS database [24], or
by directly querying the delegated name server.

Given a domain name d and a series of tuples
Qj(d), j = 1, .., m, measured during a certain epoch Et

(i.e., Tj = Et, ∀j = 1, ..,m), Kopis extracts the follow-
ing groups of statistical features:

Requester Diversity (RD) This group of features aims
to characterize if the machines (e.g., RDNS servers) that
query a given domain name are localized or are globally
distributed. In practice, given a domain d and a series
of tuples {Qj(d)}j=1..m, we first map the series of re-
quester IP addresses {Rj}j=1..m to the BGP prefix, au-
tonomous system (AS) numbers, and country codes (CC)
the IP addresses belong to. Then, we compute the distri-
bution of occurrence frequencies of the obtained BGP
prefixes (sometimes referred to as classless inter-domain
routing (CIDR) prefixes), the AS numbers and CCs.

For each of these three distributions we compute the
mean (three features) , standard deviation (three features)
and variance (three features). Also, we consider the ab-
solute number of distinct IP addresses (i.e., distinct val-
ues of {Rj}j=1..m), the number of distinct BGP prefixes,
AS numbers and CCs (four features in total). Overall, we
obtain thirteen statistical features that summarize the di-
versity of the machines that query a particular domain
name, as seen from an AuthNS or TLD server.

The choice of the RD features is motivated by the ob-
servation that the distribution of the machines on the In-
ternet that query malicious domain names is on average
different from the distribution of IP addresses that query
legitimate domains. Semi-popular legitimate domain
names (i.e., small business or personal sites) will not
have a stable diverse population of recursive DNS servers
or stubs that will try to systematically contact them. On
the other hand popular legitimate domain names (i.e.,
zone cuts, authoritative name servers, news/blog forums,
etc.) will demonstrate a very consistent and very diverse
pool of IP addresses looking them up on a daily basis.

Malware-related domain names will have a diverse
pool of IP addresses looking them up in a systematic way
(i.e., multiple contiguous days). These IP addresses are
very likely to have a significant network and geograph-
ical diversity simply because with the exception of tar-
geted attacks adversaries will not try to control or restrain
the geographical and network distribution of the ma-
chines getting compromised by drive-by sites and other
social networking techniques. Intuitively, the diversity of

1Delegation-only DNS servers are effectively limited to containing
NS resource records for sub-domains, but no actual data beyond its own
SOA and NS records.
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Figure 4: Distribution of AS-diversity (a) and CC-
diversity (b) for malware-related and benign domains.

the infected population will be different over a given time
period, in comparison to that of benign domain names.

For example, Figure 4(a), which is derived from the
dataset described in Section 5.3, reports the cumulative
distribution functions (CDF) of the AS diversity of be-
nign and malware-related domain names. In Figure 4(b)
we can see the CDFs from the CC diversity for both
classes in our dataset. We note that in both cases the
benign domain names have a bimodal distribution. They
either have low or very high diversity. On the other hand,
the malware-related domain names cover a larger spec-
trum of diversities based on the success of the malware
distribution mechanisms they use.

Requester Profile (RP) Not all query sources have
similar characteristics. Given a query tuple Qj(d) =
(Tj , Rj , d, IPsj), the requester’s IP address Rj may rep-
resent the RDNS server of a large ISP that queries do-
mains on behalf of millions of clients, the RDNS of a
smaller organization (e.g., an academic network), or a
single end-user machine. We would like to distinguish
between such cases, and assign a higher weight to RDNS
servers that serve a large client population because a
larger network would typically have a larger number of
infected machines. While it is not possible to precisely
estimate the population behind an RDNS server, because
of the effects of caching [15], we approximate the pop-
ulation measure as follows. Without loss of generality,
assume we monitor the DNS query/response stream for
a large AuthNS that has authority over a set of domains
D. Given an epoch Et, we consider all query tuples
{Qj(d)},∀j, d seen during Et. Let R be the set of all
distinct requester IP addresses in the query tuples. For
each IP address Rk ∈ R, we count the number ct,k of
different domain names in D queried by Rk during Et.
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We then define the weight associated to a requester’s IP
address Rk as wt,k = ct,k

max
|R|
l=1 ct,l

. In practice, we assign

a higher weight to requesters that query a large number
of domains in D.

Now that we have defined the weights wt,j , given a
domain name d′ we measure its RP features as follows:

• Let {Qi(d′)}i=1..h be the set of query tuples related
to d′ observed during an epoch Et. Also, let R(d′)
be the set of all distinct requester IP addresses in
{Qi(d′)}i=1..h. For each Rk ∈ R(d′) we com-
pute the count ct,k as previously described. Then,
given the set Ct(d′) = {ct,k}k, we compute the av-
erage, the biased and unbiased standard deviation2,
and the biased and unbiased variance of the values
in Ct(d′). It is worth noting that the biased and
unbiased estimators of the standard deviation and
variance have different values when the cardinality
|Ct(d′)| is small.

• Similar to the above, for each Rk ∈ R(d′) we
compute the count ct,k. Afterwards, we multiply
each count by the weight wt−n,k to obtain the set
WCt(d′) = {ct,k ∗ wt−n,k}k of weighted counts.
It is worth noting that the weights wt−n,k are com-
puted based on historical data about the resolver’s
IP address collected n epochs (seven days in our
experiments) before the epoch Et. We then com-
pute the average, the biased and unbiased standard
deviation, and the biased and unbiased variance of
the values in WCt(d′).

The RD and RP features described above aim to cap-
ture the fact that malware-related domains tend to be
queried from a diverse set of requesters with a higher
weight more often than legitimate domains. An explana-
tion for this expected difference in the requester char-
acteristics is that malware-related domains tend to be
queried from a large number of ISP networks, which
usually are assigned a high weight. The reason is that
ISP networks often offer little or no protection against
malware-related software propagation. In addition, the
population of machines in ISP networks is usually very
large, and therefore the probability that a machine in the
ISP network becomes infected by malware is very high.
On the other hand, legitimate domains are often queried
from both ISP networks and smaller organization net-
works (having a smaller weight), such as enterprise net-
works, which are usually better protected against mal-
ware and tend to query fewer malware-related domains.

2The biased estimator for the standard deviation of a random vari-

able X is defined as σ̂ =

√∑N

i=1
1
N

(X̄i − µ)2, while the unbiased

estimator is defined as σ̃ =

√∑N

i=1
1

N−1
(X̄i − µ)2

As shown in Section 5 both set of features can success-
fully model benign and malware-related domain names.

Resolved-IPs Reputation (IPR) This group of fea-
tures aims to describe whether, and to what extent, the
IP address space pointed to by a given domain has been
historically linked with known malicious activities, or
known legitimate services. We compute a total of nine
features as follows. Given a domain name d and the set
of query tuples {Qj(d)}j=1..h obtained during an epoch
Et, we first consider the overall set of resolved IP ad-
dresses IPs(d, t) = ∪h

j=1IPsj (where IPsj is an element
of the tuple Qj(d), as explained above). Let BGP(d, t)
and AS(d, t) be the set of distinct BGP prefixes and au-
tonomous system numbers to which the IP addresses in
IPs(d, t) belong, respectively. We compute the follow-
ing groups of features.

• Malware Evidence: includes the average number of
known malware-related domain names that in the
past month (with respect to the epoch Et) have
pointed to each of the IP addresses in IPs(d, t).
Similarly, we compute the average number of
known malware-related domains that have pointed
to each of the BGP prefixes and AS numbers in
BGP(d, t) and AS(d, t).

• SBL Evidence: much like the malware evidence fea-
tures, we compute the average number of domains
from the Spamhaus Block List [22] that, in the past
have pointed to each of the IP addresses, BGP pre-
fixes, and AS numbers in IPs(d, t), BGP(d, t),
and AS(d, t), respectively.

• Whitelist Evidence: We compute the number of
IP addresses in IPs(d, t) that match IP addresses
pointed to by domains in the DNSWL [9] 3 or
the top 30 domains according to Alexa [2]. Sim-
ilarly we compute the number of BGP prefixes in
BGP(d, t) and AS numbers in AS(d, t) that in-
clude IP addresses pointed by domains in DNSWL
or the top 30 Alexa domains.

The IPR features try to capture whether a certain do-
main d is related to domain names and IP addresses that
have been historically recognized as either malicious or
legitimate domains. The intuition is that if d points into
IP address space that is known to host lots of malicious
activities, it is more likely that d itself is also involved in
malicious activities. On the other hand, if d points into a
well known, professionally run legitimate network, it is
somewhat less likely that d is actually involved in mali-
cious activities.

3Domain names up to the LOW trustworthiness score, where LOW
trustworthiness score follows the definition by DNSWL [9]. More de-
tails can be found at http://www.dnswl.org/tech.
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Discussion While none of the features used alone
may allow Kopis to accurately discriminate between
malware-related and legitimate domain names, by com-
bining the features described above we can achieve a
high detection rate with low false positives, as shown in
Section 5.

We would like to emphasize that the features com-
puted by Kopis, particularly the Requester Diversity and
Requester Profile features, are novel and very differ-
ent from the statistical features proposed in Notos [3]
and Exposure [4], which are heavily based on IP repu-
tation information. Unlike Notos and Exposure, which
leverage RDNS-level DNS traffic monitoring, Kopis ex-
tracts statistical features specifically chosen to harvest
the “malware signal” as seen from the upper DNS hi-
erarchy, and to cope with the coarser granularity of the
DNS traffic observed at the AuthNS and TLD level. Fur-
thermore, we show in Section 5 that, unlike previous
work, Kopis is able to detect malware-related domains
even when no IP reputation information is available.

The Requester Diversity and Requester Profile fea-
tures can operate without any historical IP address rep-
utation information. These two sets of features can be
computed practically and on-the-fly at each authoritative
or TLD server. The main reason why we identify the
six Resolved-IP Reputation features is to harvest part of
the already established IP reputation in IPv4. This will
help the overall system to reduce the false positives (FPs)
and at the same time maintain a very high true positives
(TPs). We will elaborate more in Section 5 on the differ-
ent operational modes of Kopis.

5 Evaluation

In this section, we report the results of our evaluation of
Kopis. First, we describe how we collected our datasets
and the related ground truth. We then present results re-
garding the detection accuracy of Kopis for authoritative
NS- and TLD-level deployments. Finally, we present a
case study regarding how Kopis was able to discover a
previously unknown DDoS botnet based in China.

5.1 Datasets
Our datasets were composed of the DNS traffic obtained
from two major domain name registrars between the
dates of 01-01-2010 up until 08-31-2010 and a country
code top level domain (.ca) between the dates of 08-26-
2010 up until 10-18-2010. In the case of the two domain
name registrars we were also able to observe the answers
returned to the requester of each resolution. Therefore, it
is easy for us to identify the IP addresses for the A-type
of DNS query traffic. In the case of the TLD we obtained
data only for 52 days and had to passively reconstruct the

Figure 5: General observations from the datasets. Plot
(i) shows the difference between the raw lookup volume
vs. the query tuples that Kopis uses over a period of 107
days. Plots (ii), (iii) and (iv) show the number of unique
CCs, ASs and CIDRs (in which the RDNSs resides) for
each domain name that was looked up during one day.

IP addresses corresponding to the A-type of lookups
observed.

An interesting problem arises when we work with the
large data volume from major authorities and the .ca
TLD servers. According to a sample monitoring pe-
riod of 107 days we can see from Figure 5 (i) that the
daily number of lookups to the authorities was on aver-
age 321 million. This was a significant problem since
it would be hard to process such a volume of raw data,
especially if the temporal information from these daily
observations were important for the final detection pro-
cess. On the same set of raw data we used a data reduc-
tion process that maintained only the query tuples (as de-
fined in Section 4). This reduced the daily observations,
as we can observe from Figure 5 (i), to a daily average
of 12,583,723 unique query tuples. The signal that we
missed with this reduction was the absolute lookup vol-
ume of each query tuple in the raw data. Additionally, we
missed all time sensitive information regarding the peri-
ods within a day that each query tuple was looked up. As
we will see in the following sections, this reduction does
not affect Kopis’ ability to model the profile of benign
and malware-related domains.

Figures 5 (ii), (iii) and (iv) report the number of
CIDR (i.e., BGP prefixes), Autonomous Systems (AS),
Country Code (CC), respectively, for the RDNSs (or re-
questers) that looked up each domain name every day.
The domains are sorted based on counts of ASs, CCs
and CIDRs corresponding to the RDNSs that look them
up (from left to right with the leftmost having the largest
count). We observe that roughly the first 100,000 do-
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main names were the only domains that exhibit any di-
versity among the requesters that looked them up. We
can also observe that the first 10,000 domain names are
those that have some significant diversity. In particular
only the first 10,000 domain names were looked up by
at least five CIDRs, or five ASs or two different CCs. In
other words, the remaining domains were looked up from
very few RDNSs, typically in small sets of networks and
a small number of countries. Using this observation we
created statistical vectors only for domain names in the
sets of the 100,000 most diverse domains from the point
of view of the RDNS’s CC, AS and CIDR.

5.2 Obtaining the Ground Truth
We collected more than eight months of DNS traffic from
two DNS authorities and the .ca TLD. All query tuples
derived from these DNS authorities were stored daily and
indexed in a relational database. Due to some monitor-
ing problems we missed traffic from 3 days in January, 9
days in March and 6 days in June 2010.

Some of our statistical features require us to map each
observed IP address to the related CIDR (or BGP prefix)
AS number and country code (Section 4). To this end,
we leveraged Team CYMRU’s IP-to-ASN mapping [28].

Kopis’ knowledge base contained malware informa-
tion from two malware feeds collected since March 2009.
We also collected public blacklisting information from
various publicly available services (e.g., Malwaredo-
mains [16], Zeus tracker [31]). Furthermore, we col-
lected information regarding domain names residing in
benign networks from DNSWL [9] but also the address
space from the top 30 Alexa [2] domains verified using
the assistance of the Dihe’s IP address index browser [8].
Overall, we were able to label 225,429 unique RRs that
correspond to 28,915 unique domain names. From those
we had 1,598 domain names labeled as legitimate and
27,317 domain names labeled as malware-related. All
collected information was placed in a table with first and
last seen timestamps. This was important since we com-
puted all IPR features for day n based only on data we
had until day n. Finally, we should note that we labeled
all the data based on black-listing and white-listing in-
formation collected until October 31st 2010.

5.3 Model Selection
As described in Section 3, Kopis uses a machine learn-
ing algorithm to build a detector based on the statistical
profiles of resolution patterns of legitimate and malware-
related domains. As with any machine-learning task, it
is important to select the appropriate model and impor-
tant parameters. For Kopis, we need to identify the min-
imal observation window of historic data necessary for

Figure 6: ROCs from datasets with different sizes assem-
bled from different time windows.

training. The observation window here is the number of
epochs from which we assemble the training dataset.

In Figure 6, we see the detection results from four
different observation windows. The ROCs in Figure 6
were computed using 10-fold cross validation. The clas-
sifier that produced these results was a random forest
(RF) classifier under a two, three, four and five day
training window. The selection of the RF classifier was
made using a model selection process [10], a common
method used in the machine learning community, which
identified the most accurate classifier that could model
our dataset. Besides the RF, during model selection we
also experimented with Naive Bayes, k-nearest neigh-
bors (IBK), Support Vector Machines, MLP Neural Net-
work and random committee (RC) classifiers [10]. The
best detection results reported during the model selection
were from the RF classifier. Specifically, the RF classi-
fier achieved a TPrate = 98.4% and a FPrate = 0.3%
using a five day observation window. When we increased
the observation window beyond the mark of five days we
did not see a significant improvement in the detection re-
sults.

We should note that this parameter and model method-
ology should be used every time Kopis is being deployed
in a new AuthNS or TLD server because the character-
istics of the domains, and hence the resolution patterns,
may vary in different AuthNS and TLD servers, and dif-
ferent patterns or profiles may best fit different parameter
values and classifiers.

5.4 Overall Detection Performance
In order to evaluate the detection performance of Kopis
and in particular the validity and strength of its statistical
features and classification model, we conducted a long-
term experiment with five months of data. We used 150
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Figure 7: The distribution of TPrate for combination of
features and features families in comparison with Kopis
observed detection accuracy.
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Figure 8: The distribution of FPrate for combinations of
features and features families in comparison with Kopis
observed detection accuracy.

different datasets created over a period of 155 days (first
15 days for bootstrap). These datasets were composed by
using a fifteen-day sliding window with a one-day step
(i.e., two consecutive windows overlap by 14 days). We
then used 10-fold cross validation4 to obtain the FPrates

and TPrates from every dataset. We picked three clas-
sification algorithms, namely, RF, RC, and IBK, which
performed best in the model selection process (described
in Section 5.3) because we wanted to use their detection
rates during the long-term experiment.

In Figure 7 and Figure 8 we observe the distribution

4To avoid overfitting our dataset we report the evaluation results us-
ing 10-fold cross validation that implies that 90% of dataset is used for
training and 10% for testing — in each of the 10 folds. This technique
is known [14] to yield a fair estimation of classification performance
over a dataset.

of the TPrates and FPrates for the RF classifier over
the entire evaluation period. The average, minimum and
maximum FPrates for the RF were 0.5% (8 domains),
0.2% (3 domains) and 1.1% (18 domains), respectively,
while the average, minimum and maximum TPrates

were 99.1% (27,072 domains), 98.1% (27.071 domains)
and 99.8% (27,262 domains), respectively. The RF clas-
sifier’s FPrates were almost consistently around 0.6% or
less. The TPrate of the RF classifier, with the exception
of six days, was above 96% and typically in the range
of 98%. With the IBK classifier being the exception, the
RF and RC classifiers had similar longterm detection ac-
curacy. This experiment showed that Kopis overall has
a very high TPrate and very low FPrate against all new
and previously unclassified malware-related domains.

As described in Section 4, we define three main types
of features. Next we show how Kopis would oper-
ate if trained on datasets assembled by features from
each family, first separately and then combined. To de-
rive the results from the experiments, we used as in-
put the 150 datasets created in the previously described
longterm evaluation mode. Then, for each one of these
150 datasets, we isolated the features from the RD,
RP and IPR feature families into three additional types
of datasets. In Figure 7 and Figure 8 we present the
longterm detection rates obtained using 10-fold cross
validation of these three different types of datasets. Ad-
ditionally, we present the detection results from:

• The combination of RP and RD features (RD+RP
Features).

• The combination of RD, RP and the features
from the IPR feature family that describe the Au-
tonomous System properties of the IP address that
each domain name d points at (RD+RP+IRP(AS)
Features).

• The detection results from the combination of all
features combined (All Features).

The longterm FPrates and TPrates in Figure 7 and
Figure 8 respectively, we show the detection accura-
cies from each different feature set. One may tend to
think that the IPR (IP reputation) features hold a signifi-
cantly stronger classification signal than the combination
of RD and RP features, mainly because there are many
resources that currently contribute to the quantification
and improvement of IP reputation (i.e., spam block lists,
malware analysis, dynamic DNS reputation etc.). How-
ever, Figure 7 and Figure 8 show that with respect to both
the FPrates and TPrates, the combination of the RD and
RP sets of features performs almost equally to the IPR
features used in isolation from the remaining features.
At the same time, using all features performs much bet-
ter than using each single feature subset in isolation. This

9



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

T
P

 R
at

e

IPR Features RP+RD Features All Features

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  10  20  30  40  50  60  70  80

T
P

 R
at

e

Days

RP Features RD Features RP+RD+AS(IPR)

Figure 9: TPrates for different observation periods using
an 80/20 train/test dataset split.

shows that the combination of the RP and RD features
contribute significantly to the overall classification accu-
racy and can enable the correct classification of domains
in environments where IP reputation is absent or in cases
where we cannot reliably compute IP reputation features
“on-the-fly” (e.g., in some TLD-level deployments).

5.5 New and Previously Unclassified Do-
mains

While the experiments described in Section 5.4 showed
that Kopis can achieve very good overall detection accu-
racy, we also wanted to evaluate the “real-world value”
of Kopis, and in particular its ability to detect new and
previously unclassified malware domains. To this end,
we conducted a set of experiments in which we trained
Kopis based on one month of labeled data from which
we randomly excluded 20% of both benign and malware-
related domains (i.e., we assumed that we did not know
anything about these domain names during training).
This excluded 997 benign and 4,792 malware-related
unique, deduplicated domain names from the training
datasets. Then we used the next three weeks of data as
an evaluation dataset, which contained the domains ex-
cluded from the training set mentioned above, as well as
all other newly seen domain names. In other words, the
classification model learned using the training data was
not provided with any knowledge whatsoever about the
domains in the evaluation dataset.

We then classified the domains in the evaluation
dataset, with the assistance of a Random Forest classi-
fier, as we already discussed in Section 3. We used a
training period of 30 consecutive days and a testing pe-
riod of m = 21 days immediately following the training
period. The detection threshold θ was set to 0.9 to obtain
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Figure 10: FPrates for different observation periods us-
ing an 80/20 train/test dataset split.

a good operational trade-off between false positives and
detection rate. Our primary reasoning behind setting the
threshold θ to 0.9 was to keep the FPrates as low as pos-
sible so that an operator would only have to deal with a
very small number of FPs on a daily basis. We repeated
this evaluation four times during different months within
our eight months of traffic monitoring.

In Figure 9 and Figure 10, we can see the results
of these experiments. From left to right, we can see
the evaluation on 21 days of traffic in February, March,
May and June of 2010. We trained the system based
on one month of traffic from January, February, March
and May 2010, respectively. We chose these months be-
cause we had continuous daily observations (i.e., no data
gaps) from both training and testing datasets. As in the
longterm 10-fold evaluation, we performed the experi-
ments using six different datasets obtained using differ-
ent feature subsets.

We present the results in the same way as in Sec-
tion 5.4. When we used all features we observed the av-
erage FPrates was 0.53% ( ∼ two domains), while the
average TPrates was 73.62% (3,528 domain names). For
the RP+RD Features and IPR Features the aver-
age FPrates were 0.54% (∼ two domains) and 0.79% (∼
two domains), respectively; while the average TPrates

were 69.19% (3,315 domain names) and 87.25% (4,181
domain names), respectively. The RP+RD+AS(IPR)
Features, gave average FPrates = 0.66% (or ∼
two domain names) and average TPrates = 65.05% (or
3,117 domain names).

When we used the combination of all features we see
that for the first 42 days of evaluation (February and
March of 2010) Kopis had a virtually zero FPrates and
an average TPrates = 68%. In the following 42 days of
evaluation, Kopis, had better TPrates but with some ex-
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Figure 11: Kopis early detection results. The deltas in
days between the Kopis classification dates and the date
we’ve received a corresponding malware sample for the
domain name.

tra false positives, always below 0.5%. Investigating the
nature of the false positives, we observed that the domain
names responsible are related to BitTorrent services, on-
demand web-TV services and what appeared to be on-
line gaming sites. We suspect that the main reason why
these domains cause false positives is because the pop-
ulation of similar legitimate services was insufficiently
represented during training, and therefore, the RF clas-
sifier failed to learn this behavior as being legitimate in
training.

This experiment showed that Kopis — with all fea-
tures used — can detect new and previously unclassified
domains with an average TPrate of 73.62% and average
FPrate of 0.53%. Although this is worse than the overall
detection performance reported in Section 5.4, it is actu-
ally a good result considering that Kopis has no knowl-
edge of the domains in the testing dataset. It implies that
Kopis has good “real-world value” thanks to its ability to
detect new, previously unseen attacks is at a premium.

Figure 11 shows the difference in days between the
time that Kopis identifies a true positive domain as being
malware-related, and the day we first obtained the mal-
ware sample associated with the malware-related domain
from our malware feed. To perform this measurement,
we used malware from a commercial malware feed with
volume between 400 MB to 2 GB of malware samples
every day. Additionally, we used malware captured from
two corporate networks. As we can see, Kopis was able
to identify domain names on the rise even before a cor-
responding malware sample is accessible by the security
community. This result shows that Kopis can provide the
ability to the registrars and TLD operators to preemp-
tively block or take down malware related domains and

remove botnets from the Internet before they become a
large security threat.

5.6 Canadian TLD

Thus far, the experiments we have reported were all us-
ing data available at AuthNSs. A TLD server is one level
above AuthNS servers in the DNS hierarchy, and as such,
it has a greater global visibility but with less granular
data on DNS resolution behaviors. In this section we re-
port our experiments of Kopis at the TLD level.

We evaluated Kopis on query data obtained from the
Canadian TLD. We used the same evaluation method in-
troduced in Section 5.5 but with different training win-
dow sizes, testing epochs and classification thresholds.
Before we describe the results, we should note that all
TLD traffic needs passive reconstruction of the query
data to identify the IPs addresses in the A-type re-
source records. We used a passive DNS database com-
posed of data from four ISP sensors and the passive DNS
database from SIE [24]. The Canadian TLD’s traffic was
harvested from SIE [24] (channel three).

Unfortunately, due to the fact that we obtained traf-
fic from only 52 days (2010-08-26 until 2010-10-18) we
had to use a smaller training epoch of 14 days (instead of
one month). We evaluated Kopis using the RF classifier,
14 consecutive days as the training epoch, 14 days fol-
lowing the training epoch as the evaluation epoch, and
setting the threshold θ = 0.9. Two sequential training
epochs had seven days in common. The exact training
epochs were 08-27 to 09-11, 09-04 to 09-18, 09-11 to
09-25 and 09-18 to 10-02 while the corresponding eval-
uation epochs were 09-12 to 09-26, 09-19 to 10-03, 09-
26 to 10-10 and 10-03 to 10-17, respectively. Without
changing the data labeling methodology, we assembled
a dataset with 2,199 malware related and 1,018 benign
unique deduplicated domain names.

In Figure 12 and Figure 13, we can see the results of
this experiment. As with the experiments in Section 5.5,
we evaluated Kopis in six modes, using as threshold
θ = 0.5. We should note here that the evaluation of the
RD+RP Features reflects the evaluation mode with
datasets that were composed only by the combination of
RD and RP features. Such dataset can be extracted di-
rectly from data readily available at a TLD server (in
other words, the RD+RP Features is the most “effi-
cient” mode that Kopis can operate in and can be com-
puted on the fly at a TLD server).

When we used all features we observed the av-
erage FPrates was 0.52% (∼ six domain names),
while the average TPrates was 94.68% (2,082 do-
main names). For the RP+RD Features and IPR
Features the average FPrates were 3.18% (∼ 33 do-
main names) and 0.36% (∼ four domain names), respec-
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Figure 12: TPrates achieved during evaluation of traffic
obtained from .ca TLD.

tively; while the average TPrates were 63.63% (1,399
domain names) and 10.84% (238 domain names), re-
spectively. The RP+RD+AS(IPR) Features, gave
the average FPrates = 1.03% (or ten domain names)
and average TPrates = 78.95% (or 1,736 domain
names).

During the RP+RD Features evaluation, we ob-
served that the average TPrates reached 63.63% while
the average FPrates were in the range of 3.18%. These
were very promising results despite the relatively high
FPrates because we can operate Kopis using a sequential
classification mode, starting with RP+RD Features
followed by All Features. Kopis in this “in-series”
classification mode can achieve a good balance of effi-
ciency and accuracy.

More specifically, at the first step in the sequential pro-
cess, Kopis is a “coarse filter” that operates in RP+RD
Features with only the RP and RD statistical features
and threshold θ = 0.5. Any domain name that passes
this filter (i.e., with a “malware-related” label) then re-
quires additional feature computation, i.e., reconstruct-
ing the resolved IP address records, and further classi-
fication at the next step in the sequential process. On
the other hand, domains that are dropped by this filter
(i.e., with a “legitimate” label) are no longer analyzed by
Kopis. Thus, the first step filter is essentially a data re-
duction tool, and the sequential classification process is
a way to delay the expensive computation until the data
volume is reduced. This technique is very important at
the TLD level given the potentially huge volume of data.

In our experiments Kopis operating at the first step
with RP+RD Features (and threshold θ = 0.5)
yielded an average data reduction rate5 of 87.95% on

5We define the reduction rate as follows: 1 −
TPmalware+FPmalware

ALL
, where TPmalware is the true posi-

tives for the malware-related class, FPmalware is the mis-classified
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Figure 13: FPrates achieved during evaluation of traffic
obtained from .ca TLD.

the original dataset. After this reduction, at the second
step, we evaluated Kopis on the (remaining) dataset us-
ing all features, and keeping the same threshold θ = 0.5.
The average FPrates reported at this step by Kopis were
zero while the average TPrates were 94.44%. The over-
all FPrates and TPrates for this “in-series” mode were
zero and 60.09% (1,321 domain names), respectively.

At this point we should note that the threshold θ was
set again with the intention to have the FPrates as close
to 1.0% as possible but also not to sacrifice much of the
TPrate produced from the first classification process in
the “in-series” mode. As we saw previously, even when
we had some FPs created by the RP+RD Features
(the first classification process in the “in-series” mode),
the combination of statistical features in the second “in-
series” mode was able to prune away these FPs. An op-
erator may choose to lower the threshold θ even more
and have as an immediate effect, the increase of domain
names that will be forwarded to the second “in-series”
classification process, with a potential increase in the
overall TPrate and FPrates. The experiments in this
section showed that by using an “in-series” classification
process where different steps can use different (sub)sets
of features and thresholds, Kopis can achieve a good bal-
ance of detection performance and operation efficiency
at the TLD level.

5.7 DDos Botnet Originated in China

As discussed in Section 1, Kopis was designed to have
global visibility so that it can detect domains associ-
ated with malware activities running in an uncooperative
country or networks before the attacks propagate to net-

as malware-related benign domain names and ALL all as the domain
names in the evaluation dataset.

12



 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  20  40  60  80  100 120 140

V
ol

um
e

Absolute Lookups VS Tuples (i)

Lookups
Tuples

 0

 500

 1000

 1500

 2000

 2500

 0  20  40  60  80  100  120  140

Unique CIDR Daily Growth (ii)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  20  40  60  80  100  120  140

V
ol

um
e

Days

Unique AS Daily Growth (iii)

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140

Days

Unique CC Daily Growth (iv)

Figure 14: Various growth trends for the DDoS botnet.
Day zero is 03-20-2010.

works that it protects. In this section, we report a case
study to demonstrate Kopis’s global detection capability.

Kopis was able to identify a commercial DDoS botnet
in the first few weeks of its propagation in China and well
before it began propagating within other countries, in-
cluding the US. We alerted the security community, and
the botnet was finally removed from the Internet in the
middle of September 2010. Next we provide some in-
tuition behind this discovery and why Kopis was able to
detect this threat early.

This DDoS botnet was controlled through 18 domain
names, all of which were registered by the attacker under
the same authority (although with different 2LDs). Kopis
was deployed at the AuthNS server and was able to ob-
serve resolution requests to these domains (even when
the infected machines were initially not in the US) and
classify them as malware-related because their resolution
patterns fit the profiles of known malware domains in its
knowledge base.

These domain names were linked with six IP addresses
located in the following autonomous systems: 14745
(US), two in 4837 (CN), 37943 (CN) and two in 4134
(CN), throughout the lifetime of the botnet. We show
the difference between the absolute DNS lookups ver-
sus the daily volume of unique query tuples in Figure 14
(i). The average lookup volume every day was 438,471
with average de-duplicated query tuples in the range of
3,883. Despite this significant data reduction, Kopis was
still able to track and identify this emerging threat. In
Figures 14 (ii), (iii) and (iv), we can see the daily growth
of unique CIDRs, AS and CCs related to the RDNSs that
queried the domain names used in the botnet.

An interesting observation can be made from Fig-
ure 15. In this figure we can see the daily lookup volume
for the domain names of this botnet. Instantly we can see
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Figure 15: A snapshot from the first 70 days of the bot-
net’s growth with respect to the country code-based res-
olution attempts for the DDoS botnet’s domain names.
Day zero is 03-20-2010.

that the first big infection happened in Chinese networks
in a relatively short period of time (in the first 2-3 days).
After this initial infection, a number of machines from
several other countries were also infected but nowhere
close to the volume of the infected population in the Chi-
nese networks. As an example we can see in Figure 15
that the first time more than 1,000 daily lookups were
observed from the United States was more than 20 days
after the botnet was launched. Also, other countries such
as Poland and Thailand had the first infection 21 and 25
days after the botnet were lunched. Furthermore, large
countries such as Italy, Spain and India reached the 100
daily lookup threshold 15 days later than the start of this
botnet. Clearly, for countries like Poland and Thailand
(and even Italy, Spain and India to a large extent) local-
ized DNS reputation techniques could not have been able
to observe a resolution request (or a strong enough sig-
nal) for any of the domain names related to this botnet,
until the botnet had reached global scale, which was sev-
eral weeks after it was launched. Figure 16 shows the
volume of samples correlated with this botnet as they
appeared in our malware feeds. We observe that the
first malware sample related to this botnet appeared two
months after the botnet became active.

To demonstrate the contribution of each feature fam-
ily towards the identification of the domain names that
were part of this botnet we conducted the following ex-
periment. We trained Kopis with 30 days of data before
the 5th of May 2010. Then we computed vectors for
all the domain names that were part of the botnet. We
computed one vector every day for each domain name
based on the information we had on the domain name and
IP address up until that day. We classified each vector
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Figure 16: Volume of malware samples related with the
DDoS botnet as they appeared in our feeds. Day zero is
05-20-2010.

against four trained classifiers with the following set of
features; All Features, RD+RP Features, IPR
Features, and RD+RP+AS(IPR) Features. We
then marked the first day that each classifier detected
a domain name as malware-related, while setting the
threshold θ = 0.9. By doing so we identified the ear-
liest day that the classifier would have detected the do-
main name without human forensic analysis on the re-
sults. The detection results from this experiment can be
found in Table 1.

What the results show is that only the combination of
all features can detect all the domain names until the end
of August. On the other hand the IPR and the combina-
tion of RD+RP features detected more than half of the
domain names by the middle of July, when the botnet
was in its peak. We should also note that in the middle
of July we saw the biggest volume of malware samples
related to the botnet’s domain names surfacing in the se-
curity community. Finally, we should also note that these
18 domain names appeared in public blacklists after the
take-down of the botnet was publicly disclosed (Septem-
ber 2010). Obviously, this was not exactly how we de-
tected the botnet. After the initial identification of the 7
domain names in the beginning of May and with some
very basic forensic analysis, we managed to quickly dis-
cover the entire corpus of the related domains.

In an effort to place Kopis’ early detection abilities
in comparison with recursive-based reputation systems
(like Notos and Exposure) we check in the passive DNS
database at ISC when these 18 domain names first ap-
peared. Fifteen of them never showed up in the RDNSs
that supply ISC with DNS data. The remaining three do-
main appeared for the first time on the following dates:

2010-06-24 06:56:34, 2010-07-01 14:06:47 and 2010-
09-08 04:32:36. This means that the first domain name
related with this botnet appeared three months after the
botnet was created and this would have been the earliest
possible time that either Notos or Exposure could have
detected these domain names assuming they were oper-
ating on passive DNS data from ISC — one of biggest
passive DNS repositories worldwide. This clearly shows
the need of detection systems like Kopis that can operate
higher in the DNS hierarchy and provide Internet with an
early global warning system for DNS.

Features/Dates 5/20 6/1 7/15 8/31
All 7 9 15 18
RD+RP 3 5 12 16
IPR 3 5 13 17

RD+RP+AS(IPR) 3 5 12 16

Table 1: Number of the botnet related domain names
that each feature family would have detected up-until the
specified date assuming that the system was operating
unsupervised.

6 Discussion

In this section, we elaborate on possible evasion tech-
niques and discuss some operational issues of Kopis.

6.1 Evasion techniques
Kopis relies significantly on the Requester Diversity
(RD) and Requester Profile features. An attacker may
attempt to dilute the information provided by the RP and
RD features to evade Kopis. This could be achieved by
resolving domain names from a diverse set of open re-
cursive DNS servers or even from random IPs acting as
stub resolver (e.g., using infected machines). This will
not be as easy as it sounds, due to the RP feature family.
This is because even if the adversary looks up domain
names from various different IP addresses, the adversary
will still have to look up a large number of domain names
under the same authority to make the weight of each re-
quester large enough to alter the RP features. Addition-
ally, the adversary will have to repeatedly (for a long
enough period of time) ask for different domain names
served by the same authority in order to influence/dilute
the RDNS weighing function.

In order to be able to artificially create the necessary
signal that may dilute or even disturb the modeling of le-
gitimate and malware-related domain names, the adver-
sary would have to obtain access to traffic at the author-
ity name or TLD servers. Furthermore, the adversary
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would need a full list of statistical feature values used
from Kopis. Such an attack would be similar in spirit to
polymorphic blending attacks [12]. We note here that re-
liable and systematic access to DNS traffic at the author-
itative or TLD level is extremely hard to obtain, since it
would require the collaboration of the registrar that con-
trols the AuthNS or the TLD servers.

Domain name generation algorithms (DGAs) have
been used by malware families (i.e., Conficker [20],
Zeus/Murofet [23], Bobax [26], Torpig [27] etc.) in the
last few years. The new seed of these DGAs has typically
the periodicity of a day. This implies that domain names
generated by DGAs (and under the zones Kopis moni-
tors) will be active only for a small period of time (e.g., a
day). Due to the daily observation period mandatory for
Kopis to provide detection results, such malware-related
domain names will be potentially inactive by the time
they are reported by our detection system. Operating
Kopis with smaller epochs (i.e., hourly granularity) could
potential solve this problem. We leave the verification of
this operation mode to future work.

6.2 TLDs and Domain Registrars
As we have already discussed, just observing the DNS
resolution requests at the TLD level will not provide
sufficient information for the system to reconstruct the
IP addresses mapped with the queried domain names.
There are several ways to resolve this issue. The sim-
plest way to reconstruct the IP addresses for a given do-
main name is to check a large passive DNS database. For
the domains that are not replicated in the passive DNS
database, we can use an active probing strategy to re-
trieve the resolved IP addresses with little overhead.

As a final classification heuristic, especially in the case
of domain registrars, they can potentially combine Kopis
with domain name registration information. Classifica-
tion results from Kopis can be combined with domain
name registration information (trivially accessible to do-
main registrars) in order to further reduce FPs but also
provide an additional correlation between domain regis-
tration accounts that own domains with suspicious reso-
lution behavior according to Kopis.

7 Conclusion

In this paper, we presented Kopis, a system that can op-
erate at the upper DNS hierarchy and detect malware-
related domains based on global DNS resolution pat-
terns. To the best of our knowledge, Kopis is the first sys-
tem that can operate at TLD servers and large authorities
and provide DNS operators the ability of early detection
of malware-related domains — even without information
of the associated malware.

Kopis models three key signals at the DNS authori-
ties: the daily domain name resolution patterns, the sig-
nificance of each requester for an epoch, and the do-
main name’s IP address reputation. Using more than
half a year of real world data of known benign and
malware-related domains from two major DNS authori-
ties and the .ca TLD, our evaluation showed that Kopis
can achieve high TPrates (98.4% against all malware-
related domains and 73.6% against new and previously
unclassified malware-related domains) and low FPrates

(0.3% and 0.5%). Kopis was also able to detect newly
created and previously unclassified malware-related do-
main names several weeks before they were listed in any
blacklist and before information of the associated mal-
ware appeared in security forums. Finally, Kopis was
used to identify the creation of a DDoS botnet in China.
This ability to identify malware-related domains on the
rise can provide the DNS operators the preemptive abil-
ity to remove rapidly growing botnets at the very early
stage, thus minimizing their threats to Internet security.
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