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• Hardware Trojan (HT) paradigms on modern, realistic and complex designs are scarce.
Development of corresponding open-source HT-testbeds is important for research conducted
on defense mechanisms and detection methods for HT.

• The silicon itself can enable attacks that disable or selectively by-pass fundamental security
mechanisms (e.g., memory protection) of modern Central Processing Units (CPUs).

• Overwriting data inside the kernel address space from a user process violates address space
isolation, a powerful Operating System security mechanism.

• Current HT detection methods pertain a prohibitive economic cost, are very time consuming
and can lead to the destruction of the Device Under Test.

• Insertion of Astrahan in Ariane’s finalized
layout using ASIC tools, to showcase the HT’s
scalability, feasibility and low-footprint design.

• Evaluation of different HT detection methods
efficacy with Astrahan’s FPGA implementation.

• Further research regarding the identification of
points of interest in finalized complex layouts
for trojan insertion. Astrahan will be used as a
prime example.

/* Kernel Programming */
#include <linux /module.h>
#include <linux /kernel.h>
#include <linux /kern_levels.h>
#include <linux /init.h>
static int vic_var ;
int init_module (void)
{

vic_var=0xAABBCCDD;
printk (KERN_ALERT "%px = %pa\n", (void *)&vic_var, (void

*)&vic_var);
return 0;

}
void cleanup_module ( void )
{

printk (KERN_ALERT "%px = %pa\n", (void *)&vic_var, (void
*)&vic_var );

return 0;
}
MODULE_LICENSE( "GPL" ) ;

/* "Malicious" User Process*/
int main(){

u_int64_t * ptr;
// Get the address from stdin
printf("Memory address to be altered:");
scanf ("%p", &ptr);

// Trigger the Trojan
asm ("addi a5, zero,1\n\t" \

"sll a5, a5, 0x20\n\t" \
"lui a6, 0xfffff\n\t" \
"sll a6, a6, 0x1SSS4\n\t" \
"xor a6, a6, a5\n\t" \
"lui a7, 0xfffff \n\t" \
"sll a7, a7, 0x13\n\t" \

) ;
// Change the value stored in the address.
*ptr = 0xAAAABBBB;
return 0;

}

This is an Open-Source project. Code and examples can be 
found in: https://github.com/0ena/riscv-hw-trojans
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Module LUTs FFs LUT Utilization FF Utilization

Ariane* 66133 51854 32.45% 12.72%

Register File** 1240 1985 1.87% 3.82%

Trigger Circuit** 26 1 0.00039% 0.000019%

Memory Management Unit** 4271 3388 6.45% 6.53%

Payload Circuit** 4 3 0.0006% 0.000057%

User Process

The trigger circuit targets Ariane’s General-Purpose Registers (GPRs), as it monitors them for 
specific byte values to assert the trigger signal. Triggering circuit’s design is scalable. For the 

worst-case scenario of a 128-bit magic value, it requires only 130 logic gates.

The payload circuit targets Ariane’s Memory Management Unit (MMU). Payload circuit design 
has a minimal footprint, as it requires only 14 logic gates. 

FPGA resource utilization of Astrahan’s circuits and Ariane’s implementation.

* The utilization percentages referenced here are with respect to the total FPGA resources.
** The utilization percentages referenced here are with respect to the total Ariane Implementation.
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3. DESIGN & IMPLEMENTATION OF ASTRAHAN

4. FUNCTIONALITY & STABILITY EVALUATION

Once loaded by the
OS, the Linux Kernel
Module (LKM) assigns
a value to a 64-bit
variable defined inside
the kernel address
space.

The user process
initially activates the
HT and then alters
the value of the
variable defined by
the LKM. This is not
normally allowed by
the OS.

Functional testing on Ariane’s
trojaned RTL code using the
RISC-V Assembly unit tests
(Assembly Commands, Atomic
Memory Operations, Floating-
Point and Multiplication). Tests
were executed error-free using
Mentor’s QuestaSim.

CPU stability evaluation through
interleaved real-time execution
of Dhrystone benchmark and
RAMSpeed program on the FPGA
implemented trojan design.

Complete simulation of the
Linux boot-up process in both
trojan and trojan-free Ariane.
The following internal signaling
comparison proved that trojan
insertion leaves all the internal
signals unaffected.

Trojan 
Name

Gate 
Number Host Module

Operational 
Flexibility

Activation 
Status

ASIC
Feasibility

Open-Source 
Design

A2 1 & 91 OR1200 (Open RISC) High
Check 
needed

Feasible Yes

Astrahan 144*** Ariane (RISC-V) Very High
Check not 

needed
Feasible Yes

• Open-RISC vs RISC-V ISA.
• Equivalent number of gates for purely
digital trojan implementation.

• Astrahan’s “context switch safe” design
provides very high operability during
attack time.

• Astrahan’s design requires no prior status
activation validation during attack time.

• Astrahan’s design provides the scalability
required during a fabrication time attack.

• Astrahan’s design is open-sourced to the
community just like A2’s design.

Linux Kernel Module

The HT targets memory
protected areas of the
CPU through the store
memory-access
mechanism.

Specific memory access
checks performed during
the address translation
process are subverted to
enable the attack.

The HT targets the U-bit
of the Page Table Entry
(PTE). This bit indicates
if the processor can
access the page while
being in User Mode.

RTL code inspection and
real-time measurements
from Ariane’s internal
signal states allow for
behavioral profiling of
the signals involved in
the address translation
process.

Candidate signals are
then chosen for the
trigger and payload
circuits.

Astrahan’s low-footprint and scalable design alleviates insertion during fabrication as:

• The GPRs and the number of bits utilized by the triggering circuit, can be chosen according to the GPRs’
placement and the layout’s overall spatial options.

• The time sensitive path of the triggering signal is a multicycle-path, as a page table walk is initiated every
time the user process accesses a kernel space virtual address. Thus, Astrahan’s design can cope with
demanding layouts where the payload and triggering circuit need to be placed far apart.

• Astrahan’s design uses a minimum number of flip-flops, thus putting minimum stress on the local clock
networks and requiring less space for placement.

The overhead of the trojan gates on the original circuit paths can be calculated by exporting in test-benches
only the layout part of concern for accurate RC parasitic extractions. This enables optimal choices for the
gate-targets, the trojan gates placement and the routing metals.

*** The number of gates for the worst-case scenario, where an attacker chooses to use a 128-bit value as the triggering input.

The targeted CPU design 
is Ariane/CVA6, a 64-bit 
implementation 
of the RISC-V
Instruction Set 
Architecture (ISA).
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