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Abstract. Most modern cyber crime leverages the Domain Name Sys-
tem (DNS) to attain high levels of network agility and make detection
of Internet abuse challenging. The majority of malware, which represent
a key component of illicit Internet operations, are programmed to locate
the IP address of their command-and-control (C&C) server through DNS
lookups. To make the malicious infrastructure both agile and resilient,
malware authors often use sophisticated communication methods that
utilize DNS (i.e., domain generation algorithms) for their campaigns. In
general, Internet miscreants make extensive use of short-lived disposable
domains to promote a large variety of threats and support their criminal
network operations.
To effectively combat Internet abuse, the security community needs ac-
cess to freely available and open datasets. Such datasets will enable the
development of new algorithms that can enable the early detection, track-
ing, and overall lifetime of modern Internet threats. To that end, we have
created a system, Thales, that actively queries and collects records for
massive amounts of domain names from various seeds. These seeds are
collected from multiple public sources and, therefore, free of privacy con-
cerns. The results of this effort will be opened and made freely available
to the research community. With three case studies we demonstrate the
detection merit that the collected active DNS datasets contain. We show
that (i) more than 75% of the domain names in public black lists (PBLs)
appear in our datasets several weeks (and some cases months) in advance,
(ii) existing DNS research can be implemented using only active DNS,
and (iii) malicious campaigns can be identified with the signal provided
by active DNS.

1 Introduction

The Domain Name System (DNS) is a fundamental component of the Internet.
Most network communication on the Internet starts with a DNS lookup that
maps a domain name to a corresponding set of IP addresses. Cyber criminals
frequently leverage DNS to provide high levels of network agility for their illicit



operations. For example, most malware relies on DNS to locate its command-
and-control (C&C) servers. Such servers are used to send commands from the
attacker, exfiltrate secret information, and send malware updates.

DNS abuse is an enduring, if not permanent, feature of the Internet, which
might at best be managed through various policies, remediation technologies
and defenses. Traditionally, network operators have relied on static blacklists to
detect and block DNS queries to malware domains. Unfortunately, static black-
lists, which are often manually compiled, cannot keep pace with the quantity of
network agility of modern threats. This results in blacklists that are incomplete
and become outdated quickly.

To overcome the limitations of static blacklists, new analytical systems have
been proposed [12,15,13,14,26,29] to shorten the response time necessary to react
to new threats and secure networks. Those systems rely on the efficient collection
and presentation of passive DNS datasets. However, such datasets are difficult
to find, challenging to collect, and often require restrictive legal agreements.
These obstacles make further innovation difficult and are an impediment to
repeatability of research.

The lack of open and freely available DNS datasets puts the security commu-
nity at a disadvantage because they lack access to datasets describing a critical
component used by adversaries on the Internet. Clearly, the security community
is in need of open, freely available DNS datasets than can help increase the sit-
uational awareness around modern threats. This is illustrated by the fact that
most modern threats rely on DNS for their illicit activities.

This paper provides a solution aimed at filling this gap. We introduce the
concept of active DNS and discuss a new large scale system, Thales, which
is able to systematically query and collect large volumes of active DNS data.
The output of this system is a distilled dataset that can be easily used by the
security community. Thales has been reliably active for more than six months
and collected many terabytes of DNS data, while causing only a handful of abuse
complaints. Access to this dataset is currently available to the community from
the following project website: http://www.activednsproject.org/.

In summary, our paper makes the following contributions:

1. We present a system, Thales, that can reliably query, collect, and distill ac-
tive DNS datasets. Due to the public nature of our seed data, our active
DNS datasets do not contain any potentially sensitive information that pre-
clude their use by the security community. Thales has been collecting active
DNS data for more than six months with almost zero down time (only three
days). During this time, the system has generated more than a terabyte
of unprocessed DNS PCAPs along with tens of gigabytes of de-duplicated
DNS records per day. Thus, the active DNS datasets represent a significant
portion of the world’s daily DNS delegation hierarchy.

2. We provide in-depth comparison between the newly collected active DNS
datasets and passive DNS collected from a large university network. We show
that the active DNS datasets provide greater breadth (i.e., reaches out to a
larger portion of the IPv4, IPv6, and DNS space). Conversely, passive DNS
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yields a denser graph between the queried domain names and the remaining
IP and DNS infrastructure.

3. We practically explore how active DNS can be used to improve the security of
modern networks through several case studies. We show that the active DNS
datasets can be use for early detection of financial and other Internet threats.
Our analysis shows that more than 75% of malicious domain names appear in
the active DNS datasets months before they get listed in a public blacklist.
We demonstrate how active DNS can be used to implement and extend
existing DNS related research, specifically, by implementing an algorithm
used to detected potential domain ownership changes. Finally, we show how
active DNS can be used as a signal to identify malicious campaigns on the
Internet.

2 Active DNS Data Collection

With this section we introduce Thales. We will begin by discussing the network
and system infrastructure necessary to systematically and reliably collect the
active DNS datasets. Then, we will discuss the details of the domain names that
compile the daily seed for Thales. The section will be concluded by discussing
the long term measurement behind the collected active DNS datasets.

2.1 Infrastructure

The reliable collection of DNS data is far from easy. Thales was designed to retain
high levels of availability, efficiency and scalability. The goal of Thales is clear;
the generation of active DNS datasets that will provide systematic snapshots of
the DNS infrastructure, several times per day. These datasets will enable the
security community to construct a timeline of the evolution of threats in the
broader Internet.

Our system, Thales, is composed of two main modules as seen in Figure 1:
(a) the traffic generator and (b) the data collector. The first is responsible for
generating large numbers of DNS queries using a list of seed domain names
as an input to the system. The second module is responsible for collecting the
network traffic and guiding these raw DNS datasets for further processing (i.e.,
data deduplication).

Traffic Generation In order to achieve high availability, redundant systems
are used to generate traffic. Linux containers (LXC) [7] are setup across several
physical systems, creating a DNS scanning cluster of 30 LXC containers. Each
LXC contains its own local recursive software 4 and is assigned a job, where
a subset of the overall daily seed domain names will have to be resolved by a
particular container. High efficiency is achieved by increasing the rate of DNS

4 We used the Unbound (https://www.unbound.net/) recursive software in every LXC
container.
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Fig. 1: The Seed API is responsible for collecting the seed domains from various
sources and the Seed Generation reduces them to a list of unique domains. The
LXC Farm corresponds to the query generator which is connected to the internet
through a Network Span. That in turn is sending traffic to the Collection Point
from where data is being reduced and stored for long term on our Hadoop
Cluster.

resolution requests (a.k.a. queries per second) that can be handled by the recur-
sive in the LXC container. However, just increasing the resources of the LXC
container will not suffice for the container to handle a large enough number of
DNS requests. This is because the local recursive in the LXC is bounded by
the maximum number of ports that can be used for UDP sockets. This means
that the number of requests that can be sent by a host have to be limited to
the number of available concurrent ports that the local recursive (in the LXC
container) can handle.

At any given point in time, a container could theoretically handle up to
64,512 (215 − 1024) sockets per IP address – and therefore 64,512 UDP query
packets in transit. The LXC containers support custom network interfaces, which
support assigning a different IP address to each container. More specifically, we
use 30 contiguous IPs out of an assigned IP block of 63 available addresses (/26).
Thus, they are able to send and receive up to 30 × 64, 512 ≈ 221 simultaneous
DNS resolution requests from the infrastructure. These results are achieved by
deploying the containers on two physical systems. Each of these two systems has
64 processing cores and 164GB of RAM. It is worth pointing out that using LXC
containers allows us to scale the infrastructure horizontally by simply adding
more systems to our scanning cluster.

Data Collection The requests submitted by Thales are collected at two vantage
points. The first one is on the LXC container that has submitted the resolution
request for a given domain name, whereas the second one is at the SPAN of
a switch that routes traffic for all our containers. As mentioned earlier, we are
utilizing several IP addresses from several local virtual LANs (VLAN). These
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VLANs have been “trunked” to a single 1Gbit interface on a host that collects
all port 53 UDP traffic. We are collecting traffic at both points for redundancy
and verification of correctness for the daily active DNS datasets.

Fig. 2: A sample record from our dataset that shows the data fields that are
stored. The authority ips field represents the authoritative nameservers that
replied for this domain name and the hours variable captures the hour of the
day that this record was seen in a 24 bit integer.

Capturing network traffic results (on average) in a massive 1.67TB of raw
data in packet capture format (pcap). This data is transferred in a local Hadoop
cluster composed of 22 data nodes. The Hadoop cluster is responsible for pars-
ing the pcap files, deduplicating the resource records (RRs) and converting the
RRs into meaningful DNS tuples of following format: (date, QNAME, QTYPE,

RDATA, TTL, authorities, count) as seen in Figure 2. Deduplication is a crit-
ical step, since many responses we collect remain the same throughout a day.
Thus, after removing duplicate RRs, we are left (on average) with approximately
85GB of data per day. Detailed measurements for both daily raw and dedupli-
cated RRs will be discussed in Section 2.3.

2.2 Domain Seed

Before Thales can begin scanning the domain name system, it has to be provided
with a list of domain names that will act as candidates for resolutions. We will
refer to these domain names as the seed for Thales. The seed is an aggregation
of publicly accessible sources of domain names and URLs that we have been
collecting for several years. These include but are not limited to Public Blacklists,
the Alexa list, the Common Crawl project, and various Top Level Domain (TLD)
zone files.

More specifically, we are using the zone files that are published daily by the
administrators of the zones for com, net, biz and org. In Figure 3 we present the
number of domains obtained by each zone file. Because of the relative number of
small daily changes, compared to the size of the zone files, the daily changes are
not that apparent in Figure 3. We note that the number of domains obtained by
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Fig. 3: Number of domains over time per seed input. The security vendor list
contains about 1.5 billion domains and from the TLDs com is obviously the
largest one with about 127 million domains.

zone files changes as new domains get registered and old ones expire (and get
removed from the zone). In Thales we input these zone files that we collect daily
to our domain seed. This way our seed includes the current state of each zone
every day.

We also add the entire Alexa [3] list of popular domains to the domain seed.
This provides us with a large number of domains that would most likely be
queried in a network by users.

In order to capture domains that might not be available in one of the zone
files, we built a crawler that collects and parses domains seen in the Common-
Crawl dataset [4]. The Common-Crawl dataset is an open repository of web
crawl data that offers large volumes of crawled pages to anyone. We used com-
ponents (i.e., URLs, HTML code) from the common crawl dataset to extract
only the domains of the pages visited. Due to the size of even the Common-
Crawl “metadata section” from the common crawl, we are still using the data
published for last September 2015 and will start updating that list regularly.
Because the common crawl data is published in monthly releases, the domain
list that we extract from it and use in our seed list remains the same between
updates.

A different list of data that we utilize in our domain seed is a feed of inter-
esting domains that have been provided to us by a security company. This feed
provides us with domains that have been observed to engage in forms of poten-
tially malicious Internet activity. Because the feed provides us with new domain
names constantly, we gather all new information and append it to the already
existing list of interesting domains. We push the updated list to our collection
infrastructure daily. The feed provides us with tens of thousands of new domains
each day, making this list one of the fastest growing lists we use.

Finally we use a collection of public blacklist data in order to provide our data
with interesting hand curated domains that originate from malicious activity.
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Fig. 4: Volumes of IPs, resource records and domains observed with Thales.
March 7th was the day when we started querying for the QTYPEs: SOA, AAAA,
TXT and MX. There have been two full outages on October 25, 2015 and Jan-
uary 23, 2016. On December 6, 2015 we had an outage that lasted for most of
the day but we were able to recover the system later in the day.

More specifically the public blacklists we employ are: Abuse.ch [2], Malware
DL [9], Blackhole DNS [8], sagadc [10], hphosts [6], SANS [11] and itmate [1]. We
aggregate these lists daily and we input them into our domain seed by replacing
the old list.

2.3 Measurements

Thales has been collecting data for a little less than six months. For the purpose
of this paper we are focusing on analyzing all data in this section and then limit
in depth analysis to the last 12 days of March (the last full week forth) for
more specific measurements, unless a different window is explicitly stated. Over
six months, Thales identified approximately 10,714,784 unique IP addresses,
199,110,841 unique domain names and 662,319,389 unique RRs per day. Figure 4
shows the distribution of IP addresses, domain names and RRs on average per
day from October 5th to March 3rd 2016.

During these months, we experienced two outages. The first was when the
system was initially setup because of an update which was not rolled out correctly
and caused the system to go off-line. Therefore, there is no data available for
October 25, 2015, and policy has been updated to avoid future interruption since
then. On January 23, 2016, our campus data center was undergoing maintenance
for the cooling infrastructure, which caused a temporary shutdown of all our
systems. Such cases can now be mitigated by Thales. We have made the system
portable, which gives us the ability to move it to another location within a day’s
prior notice. Also on December 6, 2015 early in the day we had a hardware
failure on our system that was detected early in the morning. We were able to
recover the system and perform a check of the system by the same afternoon.
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(a) Active DNS.
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(b) Passive DNS.

Fig. 5: The distribution of different query types (QTYPE) in the active (left) and
passive (right) DNS datasets. The active DNS dataset is almost sustaining the
same volume of records per day, whereas the passive DNS dataset is fluctuating
more over time. Note the growth after March 28, when the Spring Break was
over and the Institute was operating at full capacity again.

After the system check, we immediately restarted the collection, but there was
not enough time in the day to go through the entirety of data in our seed list.
This is depicted by the significant dip in the data. This incident was not a full
outage since we were able to collect some data for the day.

3 Comparing Active And Passive DNS Datasets

Passive DNS has been an invaluable weapon in the community’s arsenal for re-
search combatting malware, botnets, and malicious actors [12,13,14,28,22]. Pas-
sive DNS, though, is rare, difficult to obtain, and often comes with restrictive
legal clauses (i.e., Non Disclosure Agreements). At the same time, laws and reg-
ulations against personal identifiable information (PII), the significant financial
cost of the passive collection, and storage infrastructure are some of several rea-
sons that make passive DNS cumbersome. The primary goal for the active
DNS dataset is to reduce the barrier for (repeatable) security research on DNS.
In this section, we show how active DNS relates and contrasts to passive DNS.
We will see that, while not a true replacement for passive DNS, Thales is able
to create active DNS datasets that in many cases contain an order of magnitude
more domain names and IP addresses.

3.1 Datasets

We first discuss how we obtain our passive DNS datasets. Our passive DNS
dataset consists of traffic collected at our university network. The collection
point is both below and above the recursive. This means that we collect the
responses on the both paths; (1) between the (anonymized) clients and the local
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recursives and (2) between the local recursives and the upper layers of the DNS
hierarchy (i.e., name servers, top level domains, etc.). For the active and passive
DNS comparison, we decided to utilize datasets collected during the entire month
of March 2016.

Figures 6 and 5 show eight detailed plots of the distribution of records in both
our active and passive DNS datasets. Note that all plots are log-scale for the y-
axis. As we can see, the active DNS dataset does not fluctuate a lot, compared
to the passive DNS one. This is primarily an artifact of the collection technique,
since the daily changes in the domain name seed we are using is minimal. On the
other hand, the passive DNS dataset, is is primarily driven by the behavior of
the users on the local network, which may fluctuate on weekends, holidays, and
during certain periods such as exams. This also explains the sudden increase
in traffic for passive DNS, since our campus network experienced a reduction
in traffic from March 21st until March 25th during spring break. Therefore,
Figure 6c shows an increase to more than double the unique resource records
(RRs) identified per day after Monday, March 28th, when the spring break ended.
Table 1 shows a breakdown of the datasets over the last 12 days of March, in
much greater detail.

It is worth noting that Thales is able to generate an order of magnitude more
unique domain names, IP addresses and RDATA in the active DNS dataset (see
Figure 6, subfigures a to e), in comparison to the passive DNS data collected
in a large university. This means that in actual DNS records, the active DNS
dataset is more than comparable to the passive DNS that someone can collect in
a large university. Now, as we can see from Figure 6, (f), active DNS is not able
to create as dense graphs of resource records, as someone would expect to find
in passive DNS data. This is somewhat to be expected, as in active DNS, Thales
is scanning all possible domain names that can be seen in our public sources.
This inevitably will include domain names that are rare, and in the context of
a graph compiled by RRs, they will form islands. While not necessarily bad, we
would advise researchers to take cautionary sanity steps when they utilize the
active DNS data for spectral processes.

The diversity of the different query record types (QTYPEs) we are able to
identify, in the two different datasets compared can been seen in Figures 5a
and 5b. Although there is a big difference regarding the volume of the records
available, on average the visibility is very similar, since we are collecting the
most popular QTYPEs when querying for the active DNS datasets.

4 Case Studies

To this point, we exposed several of the data properties from the active DNS
datasets. In this section, we demonstrate the security value of these new active
DNS datasets. We should clarify that our goal is not to claim as a contribution
any of the following abuse detection processes. All of them have been discussed
by previous work in the field. Rather, our goal is to practically demonstrate,
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(a) Unique domain names per day.
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(b) Unique IP addresses per day.
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(c) Unique resource records (RR) per
day.
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(d) Unique responses (RDATA) per day.
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(e) Unique effective second level domain
names per day.
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(f) The density of the Resource Records
graph in the active and passive DNS
dataset.

Fig. 6: The distribution of different records in our active and passive DNS
datasets. The plots show that Thales is able to generate orders of magnitude
more data than the passive DNS collection engine (Figures a to e) and much
more diverse (Figure f).
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Domains IPv4/IPv6 RDATA RR e2LD
Date Active Passive Active Passive Active Passive Active Passive Active Passive

3/20 258,702 6,759 41,360 1,130 150,629 3,356 1,350,118 92,218 219,009 831
3/21 259,305 6,056 43,333 1,292 162,366 3,845 1,360,660 110,379 219,009 1,072
3/22 260,676 7,535 44,090 1,180 164,685 4,364 1,400,427 109,896 219,985 1,028
3/23 260,420 8,267 43,538 1,255 147,190 4,338 1,352,019 111,247 221,466 1,105
3/24 259,389 7,635 41,273 1,206 137,491 4,024 1,367,554 112,513 222,464 1,037
3/25 261,883 8,008 44,769 1,197 155,830 4,125 1,399,724 114,518 228,119 1,024
3/26 260,011 7,479 41,830 1,127 152,918 3,616 1,362,978 111,646 226,030 1,009
3/27 260,506 6,727 42,556 1,190 148,728 3,871 1,382,096 120,624 223,313 1,043
3/28 261,551 9,100 44,216 1,340 144,365 4,499 1,375,399 199,023 223,345 1,208
3/29 261,171 9,145 42,189 948 140,225 3,658 1,369,100 204,017 225,513 789
3/30 261,513 8,200 42,992 921 157,477 4,030 1,370,090 202,702 225,642 754
3/31 261,766 9,195 42,651 956 161,387 3,798 1,399,218 202,511 225,128 809

Table 1: Number of data points collected over the last 12 days of March 2016.
Values are in thousands (×103).

Aggregate (×103) Mean Median
QTYPE Active Passive Active Passive Active Passive

A 3,082,960 813,485 256,913,375.92 67,790,485.33 257,181,439.5 54,989,441.0
AAAA 292,278 81,992 24,356,555.67 6,832,692.33 23,918,026.5 5,920,971.5
CNAME 174,881 136,901 14,573,484.5 11,408,450.0 14,582,732.0 8,495,216.5
MX 2,222,465 908 185,205,470.67 75,690.83 184,075,003.5 83,309.0
NS 5,822,874 586,695 485,239,507 48,891,296.25 485,117,732.0 39,316,201.5
SOA 3,498,172 28,162 291,514,366.5 2,346,885.75 291,172,940.5 2,022,850.0
TXT 701,689 14,499 58,474,102.67 1,208,253.83 58,304,209.5 1,205,094.5
Other 694,067 28,655 57,838,938.5 2,387,929.75 57,693,964 2,380,550

Table 2: The distribution of QTYPEs for the active and passive DNS in our
datasets.
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using the actual active DNS datasets, the security merit that active DNS data
can offer to the research and operational communities.

4.1 Enhancing Public Blacklists

Due to the nature of Thales we can make use of the collected data in ways
that can reveal abuse signal about domains before they are identified as actual
malicious use. Blacklisted domains, for example, are an interesting category of
candidate indicators of abuse that can be registered, set-up, and pointed to an
IP location well before they are actually used in malicious activities. Thus, active
DNS could be used as a potential source of raw datasets that can be used for
timely domain abuse detection.

As we have already discussed, alongside the active DNS data collection, we
were also able to gather a plethora of public domain name blacklists. As expected,
domain names in these blacklists also appeared in the active DNS traces we
collected using the active DNS project. For all domain names seen in both the
public blacklists and active DNS data, we identified two important dates. The
first denotes the first day the domain name was probed by Thales. This behavior
is driven by the addition of the domain in our seed list that can be caused
by a change in any of the zone files collected daily from the top level domain
authorities. The second important date we identified is the first day one of the
many blacklists we collect (on a daily basis) actually listed this domain name as
part of a particular abusive activity.

We compared the first seen dates of blacklisted domains and the first seen
date of a domain resolved by Thales and we plotted the results in a cumulative
distribution function (CDF) that depicts the time difference in days between a
resolution in our passive or active DNS data and the appearance of the domain
in a public blacklist. Negative values represent the number of domains that
have first appeared in our active or passive DNS data before getting eventually
blacklisted. On the other hand, positive values represent domains that had been
blacklisted before they had a resolution in our data.

It is worth pointing out that not all the public domain names blacklists were
used as a seed domain source for Thales, rather the ones that are described
in Section 2.2. That is, we should expect a fair amount of both positive and
negative values in these CDFs. Positive values indicate that a domain name was
first seen in a blacklist and then in either the active or passive DNS data that
we present in Figure 7, while negative values indicate that the domain was first
seen in DNS before being blacklisted.

Thales resolves domains that came in part from zonefiles for major top-
level domains. It queries any domain registered in that zone within a day after
it was registered and added in the zonefile. This creates a temporal history
of the DNS activity capable of describing the IP infrastructure history that
supported the domain name, before blacklisting, at the time, and after it was
blacklisted. This is a new property that active DNS datasets will freely offer to
the security community, and it is a property that is rarely seen in passive DNS
data. The reason for this behaviour that active DNS exhibits compared to passive
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(e) Difference of days from the first time
a domain name was seen in active and
passive DNS before it appeared in a PBL.
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(f) The difference between the first date
a blacklisted domain was seen in active
DNS versus the passive DNS dataset, for
the domains that were seen before they
were blacklisted. Approximately 70% of
the 17,000 domains that exist in both
datasets and were blacklisted, were first
seen in active DNS.

Fig. 7: Cumulative distribution of the first seen date in active and passive DNS,
subtracting the first seen date of the same domain in a PBL for Zeus, Spam,
Phishing, and Exploit domains.
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DNS is simple; infections get remediated and hosts are mobile, thus making it
hard for the network operator to passively observe the network evolution of the
infrastructure that supports a domain. Thus, Thales should be able to offer a
strong signal augmenting existing passive DNS data to which researchers and
network operators have access.

Figure 7 shows the CDF plots for different classes of malicious domain names
(Figures 7a to 7d). The values plotted include the domains in our active and pas-
sive DNS datasets that have been blacklisted. Several instances of these domains
are found in our dataset long before they are blacklisted; for example 50% of
domain names associated with spam were queried approximately 2.5 months be-
fore they were blacklisted. On the other hand, we do not have the same visibility
for ephemeral types of attacks, like phishing and exploit kits. In the latter two
cases, approximately 75% of the domain names are queried by Thales at least
one day earlier, with the 50% mark being at around 50 days earlier.

In total 42,000 domain names have been blacklisted and also appeared in our
active DNS dataset. From this set, 30% were queried and data have been col-
lected for approximately 100 days before the blacklisting instance (Figure 7(e)).
For 75% of the blacklisted domain names, we have collected data for more than
a week before they appeared on a PBL. Considering that PBLs have been used
as ground truth for various security systems [26,30,23,21], we are planning to
utilize this data over time to model the behavior of these domains and identify
the threats long before current systems, or even before they are utilized by the
adversaries.

On the other hand, we were able to identify 20,000 domain names in the
passive DNS dataset that also appear in blacklists. The dashed line in Figure 7
plots represents these domain names. Approximately 50% of the domain names
that are blacklisted appear in the passive DNS data feed, with only 25% revealing
themselves 50 days earlier than the blacklisting event, as shown in Figure 7e. In
this case, there are only 20,000 domain names that have been blacklisted and the
visibility that we have is approximately 15% for the 100 days mark. About 50% of
all the domain names were seen roughly two days before they were blacklisted.
This clearly supports our claim about the merit of active DNS datasets, and
how well they complement existing passive DNS repositories. The early linkage
between domain names and IP infrastructure witnessed by the active DNS data
will be able to enrich the signal that passive DNS data contains, potentially
making local DNS modeling efforts easier for researchers and operators.

In most cases, the active DNS dataset contains domain names far before
they appear in either the passive DNS or the blacklist dataset. Note that the
intersection between active and passive DNS records that have been blacklisted
is approximately 19,000. This is almost half of the domains in the active DNS
dataset and 95% of the domain names in the passive DNS dataset. Passive DNS
seems to show better results in early days for the spam domain names case
(Figure 7b), but active DNS catches up very fast (within 15 days) and then
loses the advantage again at the time of the blacklisting events (0 point in the
plot).
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Lastly, Figure 7f depicts the difference between the day a blacklisted domain
name was first seen in our active DNS dataset and the day it was seen in our
passive DNS dataset. This includes only the domain names that were seen before
the PBLs included them. Approximately 17,000 domain names have been found
in both active and passive DNS before they were blacklisted. The vast majority
of them were first resolved by Thales, at least one day before it was visited by a
system in our university. Approximately 40% of the domain names were already
being resolved by Thales for more than 100 days before they appeared in the
passive DNS dataset.

4.2 Enhancing The Detection Of Domain’s Residual Trust Change

On the Internet, domain names serve as trust anchors for numerous systems and
services, and for many, ownership of a domain is enough to prove one’s identity.
Work by Lever et. al [25] discussed the problems caused by the use of domains
as trust anchors and showed that residual trust, implicitly inherited by domains
after an ownership change, is a root cause of many seemingly disparate secu-
rity problems. Therefore, identifying changes in ownership, due to expiration
or some other cause, is an important problem in protecting against the abuse
of residual trust. WHOIS [19] is typically used to discover more information
about the owner of a particular domain, and thus, it would a appear to be a
natural fit for creating a remedy to this problem. However, collecting WHOIS
at scale is outside the grasp of most organizations due to rate limiting imposed
on automated collection of WHOIS records. To make matters worse, these lim-
its frequently vary by registrar, further adding to the complexity of collecting
WHOIS data at scale. To circumvent this problem, Lever et al., proposed Alem-
bic, a lightweight algorithm for locating potential ownership changes that relies
solely on passive DNS. This algorithm relied upon three different components:
changes in infrastructure, changes in lookup volume distribution, and change in
SOA records.

While passive DNS is much easier collect, it is also very sparse, and this
results in two limitations with respect to Alembic. Scores can only be computed
for domains observed in passive DNS and that have sufficient historical reso-
lutions. Active DNS can help improve upon these limitations. First, Figure 6e
shows that active DNS captures many more effective second level domains than
passive DNS. Given that the passive DNS dataset used for comparison was gen-
erated from a large university network, this result is particularly important. It
demonstrates that even large networks have difficulty matching the breadth of
domains that can be collected using active DNS querying. Next, active DNS
querying can consistently gather specified DNS record types over time. In par-
ticular, Figure 5b and Figure 5a show that active DNS results in substantially
more SOA records than passive DNS each day. Since one of the key components
of the Alembic scoring is SOA records, active DNS should be able to enhance
the performance of the Alembic scoring algorithm. While active DNS provides
many benefits, it is important to note that the one component Active DNS can-
not enhance is the lookup volume distribution of domains. This component is
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derived by user behavior observed in passive DNS, and therefore, there is no
analog in the active DNS dataset.
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Fig. 8: Histogram showing the distribu-
tion of Alembic scores for March 27,
2016.

To evaluate whether Alembic
could work using only active DNS,
we implemented a modified version of
the algorithm that excluded lookup
volume distribution as a component
and used a fixed window size of
two weeks. Then we computed scores
for March 27, 2016 using our modi-
fied algorithm. In total, this resulted
in 63,332,836 domains with non-zero
scores, where larger scores indicate
a higher confidence in an owner-
ship change. The distribution of those
scores can be seen in Figure 8. The
majority fell in the range between 0.4
and 0.5, and further inspection re-
vealed that the SOA component contributed the most to these scores. In short,
most of the scores in this range were a result of changes in the SOA record for the
domains. Since we saw very little change in hosting infrastructure, it is possible
these scores could simply be the result of minor changes within the SOA record.
The next largest range was between 0.9 and 1.0 and consisted of 5,652,910 do-
mains. According to the algorithm, domains with a score in this range are most
likely to have undergone a change in ownership. 5,625,397 (99.5%) of these do-
mains had a score of 1.0, indicating that both infrastructure and SOA records
had undergone complete changes. Indeed, we found 10,885 of these domains on
a public service’s list [5] of expired domains for March 27, 2016. The remainder
of these domains provide interesting cases for further study.

Our modified version of the Alembic algorithm, originally proposed by Lever
et al., provides an interesting example of how active DNS can be used to en-
hance or extend existing research. Without active DNS, deploying an algorithm
like Alembic would require access to a large scale passive DNS dataset (e.g., uni-
versity, enterprise, Internet service provider). However, using openly available
active DNS data, as offered by this research, can help remove the barriers to
using or deploying existing DNS research.

4.3 Tracking Malicious Domain Names In Non-routable IP Space

Bogons are private, reserved, or otherwise unallocated network blocks [32,18,34].
Bogons should be boring since by definition they should not be hosting anything
in the context of the global Internet. But occasionally, a domain name, like
messisux.bix, resolves to a bogon like 0.0.0.0 despite the fact this IP can
not host anything. The presence of a domain name, however, indicates a service
that should be globally reachable exists. These “nonsense” resolutions are at
times caused by misconfigurations, brand protection services, and occasionally,
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Operation Hangover CopyKittens

alertmymailsnotify[dot]com alhadath[dot]mobi

cloudone-opsource[dot]com big-windowss[dot]com

download-mgrwin[dot]com cacheupdate14[dot]com

necessaries-documentation[dot]com fbstatic-akamaihd[dot]com

newsfairprocessing[dot]com fbstatic-a[dot]space

onestop-shops[dot]com fbstatic-a[dot]xyz

servicesloginmail-process[dot]com gmailtagmanager[dot]com

servicesprocessing[dot]com haaretz[dot]link

websourceing[dot]com haaretz-news[dot]com

worldvoicetrip[dot]com mswordupdate15[dot]com

mswordupdate16[dot]com

mswordupdate17[dot]com

patch7-windows[dot]com

patch8-windows[dot]com

patchthiswindows[dot]com

walla[dot]link

wethearservice[dot]com

wheatherserviceapi[dot]info

windowkernel[dot]com

windows-drive20[dot]com

windowskernel14[dot]com

windows-my50[dot]com

windowsupup[dot]com

Table 3: Operation Hangover and CopyKittens Attack Group Infrastructure and
Domain Names.

malicious actors. To investigate further, we don our threat researcher hats and
analyze domain names that resolved to bogon IP space during our analysis. Here
we focus on malicious infrastructure as it is a primary interest of the security
community. However, we also note that active DNS data that resolves to bo-
gons would be useful in other contexts such as identifying potential trademark
infringements.

We identified two known malicious campaigns in the subset of bogon data:
“Operation Hangover” and “CopyKittens.” The former is infrastructure of a
cyber espionage threat targeting government, military, and private sector net-
works with some ties to India [17]. Domain names seen in active DNS data for
this threat are shown on the left hand side in Table 3. The latter is infrastruc-
ture for threats targeting “high ranking diplomats at Israel’s Ministry of Foreign
Affairs and some well-known Israeli academic researchers specializing in Middle
East Studies” [33] and its active DNS domains are shown on the right column
in Table 3.

These are useful indicators despite the fact these attacks are known and
likely inactive. Neutered, yet unidentified, infections are likely still operating in
networks today, which should lead to incidence responses and damage assess-
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ments. For example, knowing the specific internal machine that was infected
with targeted malware is useful even after an attack has taken place. An end-
user machine on a company’s corporate network has different implications than
a locked down server in a data center, or the CEO’s personal laptop. Interest-
ingly, some targeted threats do resolve to bogon space, while active, to reduce
their network footprint [27]. This suggests signal for malicious detection in active
DNS’s non-routable IPs.

5 Related Work

The collection of passive DNS data has been proposed by Weimer et al. [35]
over a decade ago as a method that network operators could use to investigate
security events in their environments. Zdrnja et al. [36] was the first to dis-
cuss how passive DNS data can be used for spotting security incidents using
domain names. Notos [12] and Exposure [15] used the idea of building passive
DNS reputation by statistically modeling various properties of the successfully
resolved passive DNS traffic. Plonka et al. [29] introduced Treetop, a scalable
way to manage a growing collection of passive DNS data and at the same time
correlate zone and network properties. Since then, several researchers were able
to use proprietary passive DNS data to build systems that can detect abuse
in the Internet [13,14,26,16,31,24]. Clearly, passive DNS is considered to be a
very valuable tool that network operators and security researchers use in the
fight against Internet abuse. As already discussed, our active DNS project can
provide researchers open access to DNS datasets, comparable to the very useful
passive DNS, but without any concerns on personally identifiable information
(PII) or other legal barriers to repeatable DNS research.

There have been many commercial and nation efforts to create passive DNS
repositories. The costs for the commercial offerings 5 often pose a barrier for re-
searchers and network operators. Now, some of the national efforts are hindered
by DNS policy, and thus have yet to be widely adapted by the community. Per-
haps the most successful has been passiveDNS.cn, which was quickly dismissed
as an unreliable source of DNS information. The reason behind this develop-
ment is very simple. The Chinese operators 6 passively collected DNS records
that have been already censored by their egress sensors. In our project, we do
not censor the views of the recursive DNS servers that Thales uses to resolve the
seed domain names on a daily basis.

With the respect of active scanning efforts, most of the efforts have been con-
ducted from the side of the industry. In the last year, however, new work surfaced
from the academic community [20] that provides the ability to researchers to scan
the entire IPv4 space and use the results for open security research. This is the
work that is closest to the proposed system. The key difference, however, is that
Censys was not designed to scan the domain name space, rather, IPv4. Thus,

5 For example, https://www.farsightsecurity.com/
6 http://www1.cnnic.cn/ScientificResearch/LeadingEdge/fymly1/

18

passiveDNS.cn
https://www.farsightsecurity.com/
http://www1.cnnic.cn/ScientificResearch/LeadingEdge/fymly1/


while researchers could find some DNS logs into this great public project, our
work both complements Censys and also is designed to deal with DNS scanning.

6 Conclusion

DNS is vital to the operation of the Internet. Users, systems, and services rely on
its operation for most network communication—often without even realizing it.
Malware is no different. It makes use of DNS to locate C&C servers and provide
network agility. Despite all its uses, it is incredibly difficult to gain access to
large, open, and freely available DNS datasets, and even when possible, such
data is often encumbered with privacy regulations or access restrictions. This
severely limits the pool of security researchers than can leverage DNS in their
work. Furthermore, it limits the repeatability of existing DNS based research.
Clearly, there is a need in the research community for access to large, open, and
freely available DNS data. To that end, this work built a new system, Thales, to
query and collect massive quantities of DNS data starting from publicly available
lists of domains (e.g., zone files, Alexa, Common Crawl, etc.). We are releasing
the resulting active DNS data from this system to the public, and since this
data is derived from public sources, it can be easily incorporated into new or
existing research without having to worry about privacy regulations or access
restrictions.

To prove its merit, we provide an in-depth comparison between active DNS
and a passive DNS dataset collected on a large university network. This analysis
showed that active DNS data provides a greater breadth of coverage (i.e., greater
quantity and greater variety of records), but passive DNS data provides a denser,
more tightly connected graph. Due to these differences, we provided case studies
demonstrating how active DNS can be used to facilitate new research or even re-
implement existing DNS related research. It is our sincere hope that by opening
up active DNS to the security community we can spur more and better research
around DNS.
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