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Abstract. Online advertising is a complex on-line business, which has become
the target of abuse. Recent charges filed from the United States Department of
Justice against the operators of the DNSChanger botnet stated that the botnet
operators stole approximately US$14 million [11,18] over two years. Using mon-
etization tactics similar to DNSChanger, several large botnets (i.e., ZeroAccess
and TDSS/TDL4) abuse the ad ecosystem at scale. In order to understand the
depth of the financial abuse problem, we need methods that will enable us to pas-
sively study large botnets and estimate the lower bounds of their financial abuse.
In this paper we present a system, A2S, which is able to analyze one of the most
complex, sophisticated, and long-lived botnets: TDSS/TDL4. Using passive
datasets from a large Internet Service Provider in north America, we conserva-
tively estimate lower bounds behind the financial abuse TDSS/TDL4 inflicted
on the advertising ecosystem since 2010. Over its lifetime, less than 15% of the
botnet’s victims caused at least US$346 million in damages to advertisers due to
impression fraud. TDSS/TDL4 abuse translates to an average US$340 thousand
loss per day to advertisers, which is three times the ZeroAccess botnet [27]
and more than ten times the DNSChanger botnet [2] estimates of fraud.

1 Introduction

Many researchers have observed a shift in how botnets are monetized [33], away from
traditional spam and bank fraud applications, towards advertising oriented abuse [5].
Large botnets such as Kelihos [25] and Asprox [1] have moved to monetization methods
that abuse the online ad ecosystem. Unlike other types of abuse, impression and
click fraud are “low risk/high reward” for botmasters, given the inherent difficulty in
attributing specific advertising events due to the complexity of the ad ecosystem [37].

To date, the evidence about the amount of ad-abuse attributed to modern botnets is
sporadic, mainly because of measurement challenges. Studying the monetization compo-
nents of botnets in a controlled environment (i.e., honeypots, dynamic malware analysis)
requires researchers to actively engage in the abuse, which poses ethical challenges. In
addition, dynamic malware analysis methods often fall short as botnets move their mon-
etization components away from binaries [20,36], and instead deliver them as separate,



non-executable add-on modules. Such drawbacks point to the need for an efficient passive
analysis system that can estimate the long-term monetization campaign separately from
the traditional infection, command and control (C&C) and malware update methods.
To enable efficient, independent, and passive analysis of the long-term ad-abuse

caused by botnets, we introduce a novel Ad-abuse Analysis System (A2S). A2S
leverages spectral clustering methods on passive DNS datasets to identify the network
infrastructure (domain names and IP addresses) the botnet under examination uses to
perform ad-abuse. It also employs sinkhole datasets to estimate lower bounds of financial
loss caused by the botnet’s past DNS activities. This technique can estimate financial
loss for any botnet where the monetization channel can be mapped to DNS requests. To
demonstrate this we analyze a specific botnet’s fiscal damage to the advertising world.

Using four years of network datasets, we use A2S to estimate the scale of the ad-abuse
potentially inflicted to advertisers from one of the most notorious botnets in history
— TDSS/TDL4. Our conservative estimation shows that TDSS/TDL4 caused financial
damage of at least US$346 million, or US$340 thousand per day. This estimate was made
using less than 15% of the botnet’s population, which suggests that the global lower
bound describing the financial damages towards the advertisers is likely to be higher.

While these numbers may appear large, they remain an underestimation of the true
abuse due to the choices in our measurement methodology. We must emphasize that
at every step of our analysis, we err on the side of being overly conservative, as we
are interested in lower bounds. This will help us establish an as conservative of a lower
bound as possible, using aggressive, empirically driven filtering and relying on the lowest
possible estimates for constants used in our financial abuse calculation. We intentionally
exclude highly likely TDSS/TDL4 domains in exchange for a safer lower bound estimate.
Our contributions in this paper include:

– An Ad-abuse Analysis System (A2S) that enables researchers to independently
and passively analyze the ad-abuse a botnet inflicts to advertisers. The goal of
A2S is to estimate lower bounds of the advertisers’ financial loss caused by the
botnet using data-driven approaches. With this knowledge, network operators,
such as large ISPs, can design network policies to reduce both (1) the economic
gains for adversaries that monetize ads and (2) the overall impact a botnet may
have to the online ad ecosystem and the advertisers.

– We use A2S to study the ad-abuse component of TDSS/TDL4, one of the most
complex, sophisticated, and long-lived botnets in the history of the Internet. Using
four years of network datasets from one of the largest Internet Service Providers
(ISPs) in North America, we study: (1) the network infrastructure necessary to
support the ad-abuse operation and (2) the financial model to estimate abuse
inflicted by the botnet on advertisers. Our major findings include:
• Online advertisers lost at least US$346 million to TDSS/TDL4. This amount
is based solely on actions by less than 15% of the botnet population. This
translates to more than US$340 thousand per day on average, and the abuse
was mostly accomplished by impression fraud. It is worth noting that daily
abuse levels are three times of recent results reported for ZeroAccess botnet [27]
and as large as ten times of the short-lived DNSChanger [2] botnet.
• With respect to the infrastructure that supported this botnet operation,

adversaries employed a similar level of network agility to achieve monetization as
they do with traditional botnet C&C communication. At least 228 IP addresses
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Fig. 1: An overview of the advertising ecosystem.

and 863 domain names were used to support the entire ad-abuse operation over
four years. The domain names are available at authors’ homepages [3].

2 Background

2.1 The Ad Ecosystem

Figure 1 shows a conceptual view of the overall online advertising ecosystem. In
general, when a user visits a website (Step (1)), a JavaScript or IFrame dynamically
inserts ads. The HTTP session requesting an ad is called an “impression”, and the
content is sourced at Step (2) via an ad server. Ad servers typically work with an
ad network to serve the impression (Step (3)) and log traffic source for payment. The
ad networks are increasingly operated as free services to attract the “long tail” of
content owners, but are otherwise monetized through CPM charges (Cost Per Mille,
i.e., cost per 1,000 impressions) for undifferentiated impressions.
Publishers who source their ads from a search ad network can choose to syndicate

the ads to other publishers. Search ad networks usually allow syndication in order
to reach a wider audience who do not use their own search engines. Thus, there can
be several redirections among publishers before Step (2) happens.

Some advertisers work directly with the ad network (Step (7)). However, if a given
impression cannot be fulfilled, it is sent to an ad exchange (Step (4)). The ad exchange
provides market clearance for serving impressions, typically on an individual basis.
Other advertisers work with demand-side platform providers (DSPs) to “broker”
real-time bidding on impressions through ad exchanges (Step (5) and (6)). DSPs
determine how much to bid, based on user-centric features such as IP addresses,
cookies, referrers, etc. Instead of charging on CPM basis, they claim anywhere from
5% to 60% of the revenue spent by the advertiser.
If the displayed ad was clicked, the ad server logs which publisher the click comes

from, and redirects the user to the advertiser’s page. After the click, the advertiser
is then charged based on CPC (Cost Per Click). The CPC for each click varies based
on keywords, publisher popularity, user’s profile, location, etc.

Entities in the ad ecosystem perform fraud detection independently. The technical
details are not disclosed in public documents [34,13,17]. As a countermeasure for fraud,
ad networks employ smart pricing to normalize CPC (Cost-Per-Click) for publishers
based on relative conversion rates [14,13]. Examples of conversions include product
news subscription, purchase activity, completing an online survey, etc. If click traffic
from a publisher results in a low conversion rate compared to other publishers serving
similar ads, the ad network may use smart pricing to reduce the CPC used to calculate
payment to that publisher. The drawback of the smart pricing policy is that the
conversion data are often considered sentitive information and therefore advertisers
typically are not willing to share them with the ad networks. In practice, ad networks
take many factors into account that would indicate the probability for a conversion [12].
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Fig. 2: A high level overview of DNS resolution (1-8), the sinkholing processes (A)
and the points where ad-abuse can be observed (B and C).

Nevertheless, since the conversion data are limited, attackers have been able to get
positive CPC values even after smart pricing discounts [36].
While smart pricing could reduce the levels of abuse from fraudulent clicks, this

is not the case with fraudulent impressions. Only recently, Google and IAB announced
the Ad “Viewability” standard in an effort to combat invalid impressions: at least 50%
of ad pixels need to be in view for a minimum of one second [15,8]. Advertisers can now
choose whether to only bid on viewable impressions in the Real Time Bidding process.

2.2 Botnets and Sinkholes

In the Domain Name System (DNS) [23,24], domain names are composed of labels,
separated by periods, which correspond to namespaces in a hierarchical tree structure.
Each label is a node, and the root label (.) is root of the tree. The hierarchical concatena-
tion of nodes creates a fully qualified domain name. A zone is a collection of nodes that
constitute a subtree with DNS authority servers responsible for its content. Figure 2 illus-
trates a typical resolution process. It begins with a stub resolver issuing a domain name
resolution request for a domain, example.com, to the local recursive DNS server (RDNS)
(see step 1, Figure 2). In the event that the RDNS does not have the resolution answer in
its cache, it will begin an iterative process to discover it. The RDNS will iteratively “walk”
the DNS hierarchy, starting from root server (steps 2 and 3), to the next level of effective
top-level domain (TLD) server (steps 4 and 5), and down to the authority name server
(ANS) for the requested zone (steps 6). Once the RDNS receives (step 7) the authorita-
tive mapping between the requested domain names and its corresponding answer (e.g.,
IP address) from the authority, it forwards the answer back to the stub resolver (step 8).

After a command and control (C&C) domain for a botnet is resolved, the next step
is a connection attempt (e.g., HTTP GET) from the stub to the C&C server. Network
administrators and security researchers often take over such C&C domain names to
change their DNS setting, effectively making them point to a new location. This is
commonly known as “sinkholing” a domain name [6]. If example.com is sinkholed,
the stub resolver will establish any future connections to the sinkhole (step 9, Figure 2)
rather the adversary’s C&C server.
In addition to sinkholing a domain’s A/AAAA record, one can also sinkhole the

authority name server that serves it. For instance, example.com can be sinkholed by
changing the ANS to a server under the control of the sinkholing party. Such an action
would have the following result: during the DNS lookup chain in Figure 2, after steps
1 to 5, the recursive DNS server will ask the new DNS sinkhole server controlled by the



sinkholing party about the authoritative answer for the domain name. Sinkholing both
the domain name and the ANS server is a common practice in the security community
as it provides telemetry from both the DNS resolution and network communication
planes of the threat being sinkholed.

Attackers often change C&C domains to avoid sinkholing. Domain name Generation
Algorithms (DGAs) [4,36] can be used to rapidly update the C&C domains to remain
agile against sinkholing efforts. A DGA can be implemented client-side in the malware
sample itself, or server-side in the C&C server. Intuitively, client-side DGAs can be
reverse engineered from the malware sample. Unfortunately, server-side DGAs are
much more difficult to understand as reverse engineering requires obtaining the C&C
server code, which is often heavily protected by the author. However, monitoring traffic
from infected hosts guarantees the observation of C&C domain changes.

2.3 Observing Ad-abuse In Local Networks

To understand where and what an operator can monitor, we need to examine the
typical life cycle of a host already infected with malware. First, the malware contacts
the C&C server to get its commands. These vary from search engine syndication
abuse to traditional impression and click fraud. Next, the malware will attempt to
execute the commands by interacting with the ad ecosystem. Stealthy malware carries
out these tasks by blending in with users’ normal web browsing activities in order to
evade detection from anti-abuse components within the ad ecosystem. Additionally, the
malware often reports back to the botmaster various byproducts from the monetization
activities (e.g., user’s search history during the impression or click event) in order to
maintain “bookkeeping” for the entire monetization campaign.

Typical egress monitoring functionality can be used to observe different aspects of
ad-abuse. Administrators who can inspect the egress of their networks (points A, B and
C in Figure 2) are able to independently observe the interactions over DNS and the C&C
protocol between the infected hosts, the ad ecosystem, and the ad-abuse infrastructure
that supports the particular monetization campaign. From the network’s point of view,
this observation takes the form of DNS resolutions (i.e., for the domain facilitating
ad-abuse from point C in Figure 2) and any application-layer communications between
local victims and the ad ecosystem (point B in Figure 2). We select observation points
A and C in Figure 2, so we can mine sinkhole and DNS datasets. We should also
note that HTTP connections can be observed for the sinkholed domain names (point
A in Figure 2). The communications to the sinkhole did not, at any point, reach the
ad ecosystem. This means that our efforts to study the botnet did not contribute any
additional abuse to the advertisers and other parts of the online advertising ecosystem.

3 Ad-abuse Analysis System

In this section we introduce the Ad-abuse Analysis System (A2S, Figure 3) that
allows administrators to systematically analyze ad-abuse in their networks. The goal of
the system is to provide a detailed analysis of the Internet infrastructure that supports
ad-abuse. Such information helps administrators to independently (1) estimate the level
of ad-abuse that victims in the local networks contributed to the entire ad ecosystem
and (2) obtain a set of domain names and IPs that can be used for network policy
actions. We begin by providing an overview of A2S.



Reports

Passive DNS Datasets

External Threat 
Intelligence

Sinkhole Datasets

Infrastructure Report
Financial Abuse Report

Knowledge 
Base

Spectral Expansion Module

DNS Ad-abuse Rate Module

(1)

(2)

(4)

(3)

(5)

(6)

(7)

Ad-abuse Analysis System 

Fig. 3: Overview of the Ad-abuse Analysis System (A2S).

3.1 System Overview

The input of A2S is ground truth obtained by either external threat reports or
manual analysis of a particular threat (Step (1), Figure 3). These are added to our
knowledge base for two modules: the DNS Ad-abuse Rate Module (Step (2)) and
the Spectral Expansion Module (Step (3)).
The Passive DNS and Sinkhole datasets are the input datasets for A2S. At

a high-level, the sinkhole dataset is used to identify the specifics of the command and
control communication for monetization purposes and the passive DNS datasets are
used to identify the botnet’s full infrastructure, and estimate fraud costs at a larger
scale. Collecting and handling these datasets are described in more detail in Section 4.
The DNS Ad-abuse Rate Module estimates how many ad-abuse events (i.e.,

C&C connections for impression or click fraud) are typically triggered after a single
DNS resolution request for any ad-abuse domain (Step (4)). Multiple ad-abuse actions
are often requested by each command received from the C&C server. This can be
achieved by “taking-over” a small portion of such ad-abuse domain names for a
period of time. Traditional sinkhole methods or commonly used walled garden policy
techniques [21] at the recursive DNS level and perimeter egress points of a network
can help administrators achieve this goal.
The Spectral Expansion Module identifies a set of domain names that have

been used by the ad-abuse campaign historically. This can be done by combining
ground truth from external threat intelligence with large passive DNS datasets (Step
(5)). The passive DNS datasets enable the creation of graph between the botnet’s
victims and the Internet infrastructure that have been contacted by the local botnet
victims. Using different sliding temporal windows, the spectral clustering of this graph
enables operators to extend the ad-abuse domains to a larger set that is highly related
to the ground truth. The module iteratively expands the set of ad-abuse domain
names and improves our understanding behind the long-term ad-abuse operation (Step
(3)). After expansion, the module sanitizes extended ad-abuse domains using historical
WHOIS information in order to eliminate false positives.

The resulting output from both modules will be combined (Step (6)) to derive the
final report (Step (7)), which includes all domain names and IP addresses that have
been used to facilitate the ad-abuse campaign. The expanded set of ad-abuse domains
and their historical DNS lookup volumes are used to approximate a lower bound of
financial loss caused by the particular ad-abuse campaign against the ad ecosystem,
and in particular the advertisers.

3.2 DNS Ad-abuse Rate Module

The DNS Ad-abuse Rate module quantifies the number of ad-abuse events that
are performed after a single DNS request. In this case, the ad-abuse events are the
C&C connections issued for impression or click fraud. This allows accurate projection
of DNS lookup volumes to the number of total ad-abuse events. To compute the rate,
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Fig. 4: Association matrix for domain, RDATA, and host.

the module needs to analyze DNS queries and application-layer HTTP requests to
sinkholed domains that are part of the ad-abuse campaign.
We define the “DNS Ad-abuse Rate” as ζ = y/x, where x is the number of

domain name resolution requests for the sinkholed domains and y is the number
of application-layer communication attempts that reflect ad-abuse events. In other
words, the module needs to observe x domain name resolution requests and y HTTP
connections to the sinkhole, within a time window t, to safely assume a ζ level of
ad-abuse happened with each historical ad-abuse domain lookup. Administrators can
collect such sinkhole datasets either by acquiring a commercial sinkhole data feed
or by independently taking over the ad-abuse domains, locally or globally.
Using ζ, the module can provide the system the ability to pivot from “short-term”

sinkhole observations to “long-term” passive DNS observations. More specifically, we can
project the DNSAd-abuse Rate over many years of DNS traffic related to the ad-abuse op-
eration using such passive DNS datasets. We now discuss how A2S mines these datasets.

3.3 Spectral Expansion Module

The Spectral Expansion module uses local network traffic to reason about the domain
names used for the ad-abuse operation, over a long time period. The module accurately
identifies additional domains based on original ground truth knowledge of the ad-abuse
operation, using a large passive DNS dataset. The module derives a larger set of
ad-abuse domains, DA, from the ground truth domains, D$ using spectral methods on
DNS datasets from the local network. The spectral expansion algorithm iterates through
the entire DNS query dataset. Each iteration walks over DNS data for a given day, with
the ultimate goal of discovering new ad-abuse domains that will be added to the DA set.
We conservatively assume that unknown ad-abuse domains were queried by a

common group of infected hosts, or they pointed to the same Internet infrastructure
that served the known ad-abuse domains over the same temporal window. Each day,
we create a tripartite graph that “links” candidate domain names, their resolved IP
addresses or Canonical Names (CNAMEs), and the network hosts that queried them.
The association matrix representing such a graph can be seen in Figure 4. Spectral
decomposition of this matrix enables this module to group candidate domain names
that either share common Internet infrastructure and/or local network hosts that
queried them, via standard clustering methods. Then we analyze the clusters to add
domain names to DA. Domains are added if they have explicit relationships with
already known ad-abuse Internet infrastructure or share common infected hosts.
Algorithm 1 formally describes the spectral expansion process. Each iteration of

the algorithm processes the DNS resolutions of day, di, to update the ad-abuse domain
set, DA. The operator can set δ to determine how the algorithm iterates through time.
Next we discuss the steps in detail for one iteration. Initially we assume that

DA=D$. The first four steps prepare necessary data for assumbling the association



Algorithm 1 Spectral Expansion Algorithm

Require:δ

1: H←{h|∃q∈DA : h queried q on day di}
2: D←{q|∃h∈H : h queried q on di}
3: Rdata←{ip|∃q∈D : q resolved to ip historically}∪{cname|∃q∈D : q resolved to cname

historically}
4: Apply thresholds α and β to the sets of Rdata and H, respectively, to remove noisy

IPs and hosts.
5: M← relationship between D and (Rdata, H). Normalize by IPs, CNAMEs and Hosts.
6: S←M×MT

7: UΣV ∗←SVD(S)
8: clusters←XMeans(U)
9: DA← Analyze clusters.
10: i=i+δ, Go to line 1.

matrix between domains of interest and their resolved answers. In the first step,
the algorithm identifies all internal network hosts (H) querying any known ad-abuse
domain in DA. In the second step, the algorithm narrows down potential unknown
ad-abuse domains to all domains (D) queried by infected hosts (H). In the third
step, we obtain all historical IP addresses and CNAMEs for domain names in D from
the local passive DNS database, denoted as Rdata.

During the fourth step, the algorithm removes any “noisy IP addresses” from
Rdata and “noisy hosts” from H. IP addresses that are likely used for parking or
sinkholing and hosts that are probably a large gateway or part of security research
infrastructure can introduce noisy association between domains that do not reflect
ad-abuse behavior. The algorithm excludes such “noisy” IPs and internal hosts by
using two aggressive thresholds. Note that aggressively removing domains will not
affect our lower-bound computation, it will only make our estimates safer.

The first threshold (α) denotes the number of related historical domain names for an
IP address from typical network traffic on the local network. We exclude IPs with an
unusually high number of domains. The second threshold (β) relates to the cardinality
of set D queried by an infected host. In this case, if the number of domains queried
by a host is over what we consider as typical for infected hosts in the local network,
we exclude it from the set H. The way we reason and select the actual values of α
and β will be discussed in Section 5.2.

In the fifth step, the algorithm builds an association matrix linking the domains
in D with the IP addresses and CNAMEs in Rdata and the internal hosts in H that
queried them (Figure 4). The rows represent all the domains queried by infected hosts,
and the columns reflect historically resolved IPs/CNAMEs and the hosts that queried
the domains in the day. We compute two types of weights to assemble the matrix.
The first weight reflects the DNS lookup properties from the domains in Rdata, with
the respect of IPs and CNAMEs. Specifically, the weights wij and w

′

ij reflect the

timestamp for the first day (wij) and the last day (w
′

ij) we observed domain name qi

resolving to IPj. And the weights wik and w
′

ik reflect the timestamp for the first and
last day that domain name qi resolved to CNAME CNk. The second weight reflects
a binary indicator of whether the particular domain name in Rdata was queried in
day di by an internal host in H. Specifically, if host hostl queried domain qi on day
di, the weight value wil equals 1; otherwise, wil equals 0. After the matrix has been



assembled, the algorithm will normalize by row (for each qi) the sum of “IP” values
to one, the sum of “CNAME” values to one, and the sum of “Host” values to one.
In step six the algorithm transforms the association matrix Mm×n to its

corresponding similarity matrix Sm×m. This matrix represents how similar domain
name qi is to any other domain qj. During the seventh step, the algorithm performs
Singular Value Decomposition (SVD) on S, and obtains UΣV ∗=SVD(S). The first
twenty left-singular vectors are kept for step eight, which are clustered by XMeans [28].
Step nine analyzes the resulting clusters and finds new ad-abuse domain names.

This cluster characterization process propagates the existing labels from ad-abuse
domains in our knowledge base to unknown domains. The label propagation rules are
based on IP infrastructure overlap and querying host overlap between domains. We
discuss how we propagate labels based on cluster specific thresholds in Section 5.2. The
known ad-abuse domain names set DA is updated with the newly discovered domains.

The tenth and final step of the algorithm restarts the algorithm from the first step.
Depending on the value δ set by the administrator, the algorithm determines the day to
check next; for δ equals to 1, the algorithm proceeds to the next day, whereas −1 forces
it to go backwards in time. This is very useful when the original ground truth resides
in the center of time for our network observations. Taking advantage of the updated
set DA, the system can identify more ad-abuse domains. After reaching the last day
of available data according to the iterating direction specified by δ, the algorithm stops.
Finally, the module sanitizes the derived DA to exclude mistakenly characterized

ad-abuse domains. We extract email addresses and name servers from WHOIS for
domains in DA, and compare these with known emails and name servers used for the
domains in D$. If either email or name server matches, the newly discovered domain is
kept in DA. Otherwise, we exclude the domain for financial analysis. Thus, the derived
DA will be used to estimate conservative lower bounds of ad-abuse in the local network.

3.4 Reports On Ad-abuse And Financial Models

Outputs from the DNS Ad-abuse Rate and Spectral Expansion Modules are
combined with further analysis of pDNS-DB to generate two reports. The first report
describes the network infrastructure used to facilitate the ad-abuse, using historical
IP addresses derived from the extended ad-abuse domains DA. These domains, along
with the DNS Ad-abuse Rate and the daily DNS lookup volumes, will help generate
the second report that estimates the daily and overall financial impact of ad-abuse
to the online advertising ecosystem.

Our financial model to calculate the lower bound of abuse M to the advertisers is:

Mimpression=
∑
i

ζ∗Ri∗(pim∗
µim

1000
∗CPM) (1)

For each day i, advertisers’ loss is calculated based on the number of DNS requests
Ri to d∈DA observed in the local network. ζ∗Ri reflects the total number of ad-abuse
HTTP connections for C&C purposes. We consider the connections in ζ ∗Ri that
result into the pclk component, which reflects the percentage of HTTP connections
that corresponds to impression fraud communications. Since each connection may
contain multiple impressions, µim represents the multiplicative factor necessary for the
model to derive the total number of impressions. The number of thousand impressions
multiplied by the CPM (cost-per-thousand impressions) allows us to calculate the
financial loss from the fake impressions.



Records
Date Range Size (millions)

DNS Sinkhole 8/1/2012 - 5/31/2013 6.9G 565
HTTP Sinkhole 8/1/2012 - 5/31/2013 248.6G 919
NXDOMAIN 6/27/2010 - 9/15/2014 133.5G 13,557
pDNS-DB 1/1/2011 - 11/6/2014 17.9T 10,209

Table 1: Summary of datasets.

Using model Mimpression we assume that smart pricing policies were perfect across
the entire ecosystem and no click fraud was successful at any point in the lifetime of the
botnet operation, whereas the attackers were able to monetize fraudulent impressions
from infected hosts. This assumption is realistic since detecting impression fraud has
been extremely challenging to date [31,33].

4 Dataset Collection

To increase the situational awareness behind the problem of long-term ad abuse, we
chose to analyze the ad-abuse component of the TDSS/TDL4 botnet, which uses a server-
side DGA to generate its C&C domains. We describe the collected datasets in this section.

4.1 Sinkhole Datasets

We obtained sinkhole DNS and HTTP traces for the ad-abuse component of
TDSS/TDL4 from two security companies. The datasets span over 10 months. All
domain names that were sinkholed had a zero time-to-live (TTL) setting, which
prevented caching at the recursive DNS server level, forcing it to contact the DNS
sinkhole server for every lookup. Moreover, the HTTP sinkhole returned “HTTP 200
OK” answers back to the victims with no content. That is, the sinkhole administrator
did not actively engage in ad-abuse.

In order to quantify the DNS Ad-abuse Rate (Section 3.2), we need to understand the
type of HTTP connections in the datasets. TDSS/TDL4 employs two C&C protocols
to facilitate its ad-abuse operation. Both protocols were present in the HTTP datasets
we obtained. The first protocol, “Protocol 1”, is the primary mechanism through which
the botnet performs impression fraud. This is achieved via an HTTP GET request
to the active C&C, which will reply back with a set of advertisement URLs used for
impression fraud. Among other information, Protocol 1 also reports the version of
the malware behind the infection and a unique identifier for each victim, namely bid.
All these observations are in-line with data collected and analyzed by other security
researchers [26,29]. The second protocol, “Protocol 2”, is used to report back information
regarding search terms from the victim’s browser, the publisher’s website where ads have
been replaced and clicked on, and the original ad that was replaced from the publisher’s
website. A semantically similar behavior of TDSS/TDL4 botnet is identified by Vacha et
al. [10], where fraudulent clicks were only generated when a user engaged in real clicks. In
order to protect infected users’ privacy, the search terms were given to us in an aggregated
form such that they cannot be mapped to the individual ID and the infected IP.

In total, we observed 565 million unique DNS resolution requests. 544 million were
for Protocol 1 and 21 million were for Protocol 2 connections. This traffic was produced
by 47,525 different recursive DNS servers (RDNS) around the world. Hosts with
66,669 unique identifiers (ID) contacted the HTTP sinkhole, using 615,926 different
IP addresses. They made 343 million unique HTTP GET requests using properly
formatted base64 encoded URLs. 919 million connections were recorded, only 0.87%



Fig. 5: Top: The line plot shows victim population of the botnet sample that contacted
the sinkhole infrastructure, with y-axis on the left. The area plot shows the number
of sinkholed domains with y-axis on the right. Bottom: Percent change.

of which reflected Protocol 2 communication, while the rest 99.13% reflected Protocol
1 connections. Thus, we assigned pim=99.13% for Equation (1).

4.2 Passive DNS Datasets

We gathered two types of DNS datasets from a large US ISP that represents
approximately 30% of DNS traffic in the US. The first is the NXDOMAIN dataset,
which covers over four years of DNS queries from clients of the ISP for domains that
did not resolve at the time of query. The second dataset we obtained is a historical
passive DNS database (pDNS-DB), from the same ISP, containing DNS resource
records (RR) [23,24] collected from 1/1/2011 to 11/5/2014.

The queries from the NXDOMAIN dataset are DNS answers with a return code of
“NXDOMAIN”. The dataset was collected below the recursive DNS servers, effectively
capturing the queries from hosts to the recursive DNS servers. Throughout the
four-year period, we gained access to 1,295 days of NXDOMAIN data (as the DNS
query dataset) from the ISP sensors.
The pDNS-DB dataset contains over 10 billion RRs. Each RR provides resolved

data and the daily lookup volume of a queried domain name. The pDNS-DB was
collected from 24 geographically diverse ISP collection points in the United States.

5 Analysis and Measurements

In this section, we discuss how we compute the DNS Ad-abuse Rate, and how we
propagate ad-abuse domains from ground truth D$ to the larger set DA.

5.1 Computing the DNS Ad-abuse Rate

As a sanity check, we measure the average infection duration, the victim population,
and the geographic distribution of sinkholed infections.
Figure 6a shows the cumulative distribution function of the average infection

duration based on IP address and victim ID, a 40-byte long hexadecimal value that
was tagged by TDSS/TDL4 malware as bid in Protocol 1 communications. The results
show a relatively longer infection lifetime for the victims based on the unique identifier
than using the victim’s IP address. This is reasonable due to the complexity of network
egress points, Network Address Translation (NAT) points, and DHCP churn rates [32],
as other researchers have already noted.
Second, we measured the victim population coverage of the sinkhole traffic, using

the number of unique daily IDs that contacted the sinkhole. Figure 5 illustrates how
the number of daily victims changes over time and the percentage of change [16] for
the botnet observed from the sinkhole data. In the first two months of the datasets, the
number of infected IDs reached a maximum of almost 30,000. After a sudden 6.7% drop



in October, the number of IDs seen daily in our datasets decreased, until the middle of
November 2012. The decrease indicates that the malware changed C&C domains from
sinkholed domains to others. At that point the sinkhole administrators “refreshed” the
sinkhole by adding six new domain names for the same botnet. This caused an increase
in the number of IDs that were found in the sinkhole datasets. A large number of old
IDs reappeared in the sinkhole data after the addition of these six new domains. This
observation is expected, as the server side DGA churns through new domains and old
infections catch up with the new sinkholed domain names. After a peak of almost 8.9%
increase at the end of 2012, the daily victim population remained around 23,000 until the
middle of February 2013. Afterwards, the size decreased by a factor of almost 2% daily.

Finally, we examined the geographic distribution of the infected population. As our
passive DNS datasets were collected at a US ISP, we want to make sure that the sinkhole
dataset contains a reasonable size of victims located in the US. We identified the corre-
sponding CIDR and Autonomous System Number (ASN) for each victim IP address [22],
and used historical data from Regional Internet Registries (RIR) to find the country codes
for the identified ASNs. Almost half of the sinkhole traffic originates from victims in the
US (46.77%). In total, 174 countries were affected, however, only 15,802 infections resided
in countries outside the top six countries (US, EU, DE, CA, FR, UK). These results show
that TDSS/TDL4 traffic in our pDNS-DB dataset will allow us to study less than 15% of
the entire botnet. This is due to the fact that the passive DNS dataset is collected from
an ISP in the United States, which represents 30% of the overall DNS traffic in the US.
Computing the DNS Ad-abuse Rate ζ: Since our pDNS-DB dataset was

obtained from a US ISP, we calculated the DNS Ad-abuse Rate ζUSISP based on the
sinkhole traffic that reflected victims in the particular ISP. This resulted in 9,664 unique
victim IDs, 28,779,830 DNS connections, 154,634,443 HTTP Protocol 1 connections and
1,159,027 HTTP Protocol 2 connections over an observation window of 10 months. The
mean for the entire ISP as ζUSISP

mean =27.62. which we used as the final DNS Ad-abuse
Rate for our experiments. As discussed in Section 4.1, DNS caching will not bias our
rate, since the sinkhole administrators had set a TTL equal to zero for the domains
they sinkholed.

5.2 Spectral Analysis

We used Algorithm 1 described in Section 3.3 to derive ad-abuse domains set DA

starting from our limited ground truth D$. In this section we discuss the operational
challenges we faced while running this algorithm.
Assembling the Association Matrix Before we constructed the association

matrix (see Figure 4), we removed noisy IPs and internal hosts from the sets Rdata
and H.
Threshold (α) for Noisy IPs: Figure 6b shows the number of historical domain

names per IP address, which were manually labeled from the TDSS/TDL4 ad-abuse
domains in D$. We observed that under 40% of confirmed TDSS/TDL4 C&C IPs
historically have fewer than 1,000 domains pointing to them. The IPs having more
historical domains are likely used for parking or sinkholing. We conducted a one-time
manual analysis of a set of IP addresses around the limit of 1,000 related historical
domains. The analysis revealed that considering IPs with more than 1,000 historical
domains as noisy is an aggressive threshold. However, since we are estimating the
lower-bound of TDSS/TDL4 ad-abuse operation, falsely removing IPs that were not
used for parking or sinkholing will only help our lower bounds goal. That is, such an



aggressive threshold will only remove links within the association matrix that would
have allowed us to discover additional ad-abuse domains to be added to the set DA.

Threshold (β) for Noisy Hosts: Figure 6c shows the cumulative distribution of
the number of domains queried by infected hosts in a day. Note that the x-axis is in log
scale and the y-axis starts at 90%. The plot shows that only 0.7% of infected hosts
queried more than 1,000 domain names in a day. These hosts are likely gateways or
research infrastructure that cannot link known and unknown ad-abuse domains reliably
during the clustering process. Thus, we used the 1,000 mark as threshold. This means
that any host that queried more than 1,000 domains in a day was instantly excluded.
This should take care any network address translation (NAT) points and complex
infrastructure within the ISP. Again, this is an aggressive threshold, which rather forces
us to underestimate the infected hosts (and yield again closer to lower bounds).

Using these thresholds, we constructed the sparse matrix, performed Singular Value
Decomposition, and extracted the first 20 left-singular vectors, which we used to cluster
the domains in the matrix using XMeans [28].

Cluster Analysis After clustering, we labeled ad-abuse domains based on IP
infrastructure and infected hosts.

IP Infrastructure: From clusters containing known ad-abuse domains, we label
unknown domains as ad-abuse domains if they share the same IP infrastructure.

Internal (Infected) Hosts: Since TDSS/TDL4 uses a server-side DGA, unknown
C&C domains can also be nonexistent domains that never resolve. Therefore, we cannot
rely solely on infrastructure to derive the set of domains DA. Our intuition is that, if a
NXDOMAIN is queried by a large percentage of known infected hosts, it is likely to be an
ad-abuse domain. We use an aggressive filtering process to find such domains based on
internal host overlaps. The internal host overlap was the percentage of the infected hosts
that queried the domain names. We used an aggressive cutoff to on keep NXDOMAINs
with the strongest 5% host overlaps, which is in line with our lower-bound goal.

Correctness of Spectral Expansion Module We bootstrapped the spectral
expansion process with 296 TDSS/TDL4 domains recovered from various public
resources. After operating Algorithm 1 2,590 times, going over every day of the
NXDOMAIN dataset twice, we discovered 838 new TDSS/TDL4 domains. This means
that the total number of TDSS/TDL4 domain names in the setDA was 1,134. Next, the
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Lookup Vol.
Detected Labeled (millions)

Shared Email Address
email1@nhjhajsukk.cc 216 12 425
email2@aol.com 73 63 205
email3@dikloren.biz 65 9 144
email4@rocketmail.com 112 9 64
email5@kraniccky.com 6 3 57
email6@u7.eu 0 171 261
email7@gmx.com 0 20 28
Shared TDSS Name Server 6 - 4
No Active IP Address
Sinkholed 64 9
Two TDSS Parking Services 25 -
Never Registered 268 -

Non TDSS/TDL4 3 -

Total 838 296
Table 2: Categories of newly detected ad-abuse domains with obfuscated email addresses.

sanitization process reducedDA to 765 domains based on historical WHOIS (WHOWAS)
information from DomainTools. These domains match known TDSS/TDL4 domain
registration email addresses or name servers, as shown in Table 2. The lookup volume
for these domains will be used for the financial analysis in Section 6.2.

We manually analyzed the rest of the domains, and found that only three domains
were mistakenly added to the set DA by the spectral expansion module, while the rest
were related to ad-abuse. The category “No Active IP Address” in Table 2 contains
domains that only resolved to known sinkholes, parking IPs, and domains that were
never registered. “Sinkholed” represents domains sinkholed by researchers. “Two TDSS
Parking Services” refers to domains pointed to the same two parking services used
by known TDSS domains during the same time. Lastly, 268 of newly detected domains
were never registered. However, based on the large host overlap of these domains
with known TDSS domains and name string characteristics, we concluded that these
domains were related to the TDSS/TDL4 botnet.

6 Ad-abuse Reports

This section discusses the two reports that summarize the network infrastructure
properties behind the ad-abuse component of TDSS/TDL4 and our estimation around
financial impact that the botnet brought to the advertisers over four years.

6.1 C&C Infrastructure

Using the 1,131 domains in set DA, we analyzed the network infrastructure used by
the ad-abuse component of the botnet. We separated IP addresses used by these domains
into parking, sinkhole, and active categories. Besides well-known parking and sinkholing
IPs, we consider IPs with more than 1,000 historical domains to be parking IPs because
of the α threshold discussed in Section 5.2. All other IP addresses were considered to be
active. Figure 7 shows the number of domains resolving into each category over the four
year observation period. In total, at least 863 domains were registered and the botnet
used 228 IP addresses. These IP addresses were used for two years and ten months,
until 10/15/2013. These domains were mostly active before the middle of 2012. We
should note that during July 2012, a number of researchers started sinkholing some of
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Fig. 8: Top: Daily advertisers’ money loss caused by the ad-abuse component of
TDSS/TDL4. Bottom: Cumulative financial loss for advertisers. Less than 15% of
the botnet population have been involved in ad fraud that cost at least US$346 million.

the TDSS/TDL4 domains. This perhaps forced the botmasters to change monetization
tactics as security researchers were investigating the ad-abuse component.
The botnet used a variety of hosting infrastructures to facilitate the abuse. We

obtained ASN information for 195 out of 228 total active IP addresses used by the
ad-abuse C&C. They are under 49 different Autonomous System Numbers (ASN),
59 CIDRs and 24 countries. Table 3a shows the distribution of the servers around
the globe, used by TDSS/TDL4 domains.

6.2 Financial Analysis

We used Equation (1) to estimate the advertisers’ financial loss. For our local network
(the US ISP) we calculated the DNS Ad-abuse Rate to be ζ = 27.62 (Section 5.1)
and the percentage for impression fraud as pim=99.13% (Section 4.1). We calculated
the daily number of DNS requests Ri to domains used for ad-abuse that resolved to
active IP addresses. This is an under-estimation since we used aggressive thresholds
to exclude potentially parked domains in our passive DNS traces (as we discussed
in Section 5.2). This resulted in 1.2 billion DNS requests in total. µim denotes the
number of ads returned by each Protocol 1 request (which relates to impression fraud
activity). During our analysis, we identified instances where as many as 50 ads were
returned from the C&C after each Protocol 1 request. We never saw fewer than 5
ads per request according to network traces of malware execution reported by [26].
Therefore, we used µim=5 for our lower bound estimate.

Throughout the lifetime of TDSS/TDL4, we estimate levels of ad-abuse on the
order of at least US$346 million using Equation (1). This lower bound is only based
on the DNS datasets from the American ISP network to which we had access. Figure 8
shows the distribution of the financial loss caused by TDSS/TDL4 to advertisers. The



Country IP Addresses %
RU 42 18.42
US 34 14.91
LV 20 8.77
PT 19 8.33
DE 18 7.90
EU 17 7.46
NL 13 5.70
Other (17) 32 14.04
Unknown 33 14.47
Total 228 100.00

(a) Infrastructure Location

Money
Stakeholders (millions)
Advertisers’ Capital 346.00
DSP 45% 155.70
Ad Exchange (inbound) 8% 27.68
Ad Exchange (outbound) 8% 27.68
Ad Networks 32% 110.72
Ad Server/Publisher (Affiliates) 7% 24.22

(b) Financial Break Down

Table 3: 3a: The top 8 countries where C&C infrastructure has been identified. They
count towards 71% of the IP addresses. 3b: Financial break down approximation
among the entities of the online ad ecosystem, in millions of dollars.

daily financial loss is shown at the top of the figure, and the cumulative financial loss is
at the bottom. We observed 1,018 days of active ad-abuse C&C DNS communications,
caused by victims in the American ISP. This resulted to an average of US$340 thousand
lost daily loss for advertisers. However, before the first sinkholed domain was registered
on 7/11/2012, the daily estimate was on average US$616 thousand and peaked to
US$1.97 million, on 1/7/2012. After the sinkholing action, the financial impact to the
advertisers drastically decreased as the plateau of the bottom plot in Figure 8 shows.

We strongly believe that other networks in the world were affected by this threat
based on our sinkhole analysis described in Section 5.1. The victims in the entire ISP
roughly accounted for 30% of the total botnet population in the US. The infected
hosts in the US were less than 50% of the entire botnet population in the world. Thus,
our lower bounds may only conservatively estimate loss caused by less than 15% of
the entire botnet population.

Cost for Operating the TDSS/TDL4 Infrastructure: The ad-abuse hosting
infrastructure was located in 228 different IPs. Without knowing the hosting plans
actually used by the botmasters, we have to consider an average cost plan for each
service provider to approximate the cost of running the TDSS/TDL4 botnet. Using
manual analysis, we conclude that the average minimum (i.e., the botmaster is using the
least expensive plan) cost is approximately US$33.62 per month, whereas the average
maximum cost is almost US$444 per month. We assume infrastructure is used around
the clock. For IPs that we could not link to a particular AS, we assume a flat rate.
This rate corresponds to the median of the observed prices around the world. Using
this information, we conclude the cost to operate the TDSS/TDL4 C&C infrastructure
to be between US$44,000 and US$260,000 over four years.

Potential Financial Reward for the Botnet Operators/ Affiliates: While
it is impossible to know for sure what the exact reward may have been, we tried to
approximate the revenue that went to the affiliate TDSS/TDL4 entities. To derive
the stakeholder and the break-down described in Table 3b we consulted the Chief
Technology Officer (CTO) of a large Demand Service Platform company. According to
his expert opinion, these are the most typical breakdowns to various entities in the ad
ecosystem. As we can see from Table 3b, the potential financial reward for the affiliates
is in the order of tens of millions of dollars.



The botmasters and affiliates are likely getting paid as publishers or traffic resellers.
In this role, the estimated revenue is 7% of money spent by advertisers, US$24.22
million. Our estimates are in-line with investigations from law enforcement on the
amount stolen by fraudulent advertisement campaigns [11,18]. For example, law
enforcement agencies recently estimated a minimum level of financial gains on the
order of US$14 million dollars for the botmasters behind the DNSChanger botnet [35].
Note that DNSChanger was a significantly smaller botnet that operated over less than
half the time period that TDSS/TDL4 was active.

7 Discussion

Our study aims to increase the situation awareness behind botnets that employ
sophisticated techniques to abuse the online ad ecosystem and hopefully motivate
further research in the space of ad-abuse. In this section we will discuss the most
important challenges we faced while analyzing TDSS/TDL4.

7.1 Ground Truth Behind the Financial Loss

The botnets that interact with and monetize the ad ecosystem typically do not target
a single entity (i.e., Google, Facebook, or Microsoft etc.). Due to the secrecy within
the ecosystem, it is very hard to gather all the datasets from different entities necessary
to verify whether the abuse levels we estimated are actually what the advertisers lost.
For example, however unlikely it may be, we cannot exclude the possibility that some
percentage of the impression fraud could have been detected and stopped by some entities
in the ad ecosystem. Unfortunately, we cannot determine how much impression fraud, if
any, was blocked, nor by whom. Thus, we had to rely on our own assumptions to estimate
the lower bound. However, even in the scenario where one entity had perfect defenses,
we cannot reliably assume it to be true for all the other entities in the ad ecosystem.
While we contacted several entities in the ad ecosystem, they remain secretive about the
methodology and tools that they use to detect fraud. Even if a small percentage (i.e.,
30%) of the reported fraudulent traffic evades detection, the losses are still significant.

7.2 Ground Truth Behind TDSS/TDL4

Our goal was to get ground truth around the way the TDSS/TDL4 botnet operates
in the wild without contributing to online abuse. To that extent, we decided to gather
the ground truth from external reports, and also from analyzing the sinkholing datasets
of DGA domain names that supported the monetization module in TDSS/TDL4.
Observation of DNS Ad-abuse Rate was made passively from actual infected hosts
around the world. The TDSS/TDL4 victims were notified behind this sinkholing
operation, and the sinkhole data were released to the operational community and
several entities in the online ad ecosystem.

7.3 Smart Pricing Data for Impressions and Clicks

We assumed that perfect smart pricing for CPC was successfully used across the
ad ecosystem, whereas all fraudulent impressions impacted the advertisers. However,
attackers most likely can still profit from fraudulent clicks after smart pricing. For
instance, recent work shows the actual CPC charged after smart pricing was between
10 to 30 cents for ZeroAccess [27]. Smart pricing is hard since not all conversion
rates can be effectively measured. Not all conversion actions were logged and shared
between advertisers and ad networks/exchanges. The fact that TDSS/TDL4 does



both impression and click fraud implies that the monetization technique tried to avoid
detection by generating positive click-through rates.

We chose to account for all the impressions since we do not have knowledge about how
impression fraud was actually handled by the ad networks and ad exchanges. Although
new standard of Ad Viewability has been announced and deployed to prevent advertisers
from spending money on invalid ad impressions [15,8]. However, since there is almost no
documentation about how impression fraud was dealt with by ad networks and ad ex-
changes when TDSS/TDL4 was active (before October 2013), it is not unreasonable to as-
sume that a significant portion (if not all) of the impressions most likely went undetected.

8 Related Work

Operating a sinkhole is a safe, passive way to collect data regarding network
connections between malware and the servers they try to contact. Malware needs to
find a way to contact its Command and Control (C&C) server [7], which cannot always
be done through P2P protocols, since network operators often block them. In the case
of TDSS/TDL4, the malware uses P2P as an alternative communication method [30].
Data collected from a sinkhole operation can be used to measure the network behavior
of a botnet. For example, [32] used sinkhole to uniquely identify infected hosts.

Studies on ad abuse often focus on the ad network’s perspective [19,10]. Daswani et
al. [9] showed how the value chain of ad-abuse operates online through the “Clickbot.A”
botnet of 100,000 hosts. Springborn et al. [31] studied pay-per-view networks and
described how millions of dollars are lost by fraudulent impressions annually. Moreover,
Stone-Gross et al. [33], studied abuse from both a botnet’s and ad network’s point of
view, showing the large amount of money the botnet can make. These works carefully
focus on specific parts of the ad ecosystem, while ours characterizes overall abuse
impact by using edge-based metrics.

The work most similar to ours is the recent ZeroAccess study [27] that estimated daily
advertising losses caused by the botnet by analyzing one week of click fraud activities dur-
ing a takedown against the ad-abuse component of ZeroAccess, mainly from the view of a
single ad network. While the ZeroAccess study was novel, it did not help large network ad-
ministrators independently measure the levels of ad-abuse originating from their network
environments. Our system addresses these limitations from previous studies by studying
the ad-abuse problem passively at the edge of the Internet over a multi-year time period.

9 Conclusion

This study aims to quantify the scale of online advertising abuse. To achieve this
we present a novel system, Ad-abuse Analysis System (A2S), able to conservatively
estimate the long-term damage of the monetization component botnets use against
the ad ecosystem. Using A2S we studied one of the most notorious botnets that
fraudulently monetized the ad ecosystem for four years: TDSS/TDL4. Using passive
DNS and sinkhole observations, we were able to estimate TDSS/TDL4’s lower bounds
for its ad-abuse: no more than 15% of botnet victims were responsible for at least
US$346 million in financial loss to online advertisers since 2010. This includes a
peak average daily loss of almost US$2 million at the height of the botnet’s ad-abuse
activity in early 2012. Overall, these figures reveal the extent of the abuse that
botnets could bring to the advertisers over time, making ad-abuse a low risk and high
reward monetization method for botmasters. The estimated lower bounds suggests
the importance of additional research efforts in the ways botnets are being monetized.
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